Normalized defining polynomial
\( x^{20} + 8 x^{18} + 34 x^{16} - 42 x^{14} - 724 x^{12} - 902 x^{10} + 837 x^{8} + 2882 x^{6} - 1527 x^{4} + \cdots - 1 \)
Invariants
| Degree: | $20$ |
| |
| Signature: | $[10, 5]$ |
| |
| Discriminant: |
\(-4432204969617689467720296300544\)
\(\medspace = -\,2^{50}\cdot 89^{8}\)
|
| |
| Root discriminant: | \(34.07\) |
| |
| Galois root discriminant: | not computed | ||
| Ramified primes: |
\(2\), \(89\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-1}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{12}a^{16}+\frac{1}{3}a^{14}+\frac{1}{12}a^{12}-\frac{1}{2}a^{10}+\frac{1}{4}a^{8}+\frac{1}{3}a^{6}+\frac{1}{6}a^{4}-\frac{1}{6}a^{2}-\frac{5}{12}$, $\frac{1}{12}a^{17}+\frac{1}{3}a^{15}+\frac{1}{12}a^{13}-\frac{1}{2}a^{11}+\frac{1}{4}a^{9}+\frac{1}{3}a^{7}+\frac{1}{6}a^{5}-\frac{1}{6}a^{3}-\frac{5}{12}a$, $\frac{1}{71\cdots 32}a^{18}+\frac{51602553474089}{71\cdots 32}a^{16}-\frac{1}{2}a^{15}-\frac{20\cdots 79}{71\cdots 32}a^{14}-\frac{1}{2}a^{13}+\frac{217033327318747}{71\cdots 32}a^{12}-\frac{296127161199989}{23\cdots 44}a^{10}-\frac{32\cdots 29}{71\cdots 32}a^{8}-\frac{1}{2}a^{7}+\frac{127193463524871}{11\cdots 72}a^{6}-\frac{1}{2}a^{5}+\frac{203080345916521}{593438642823386}a^{4}-\frac{1}{2}a^{3}-\frac{27\cdots 19}{71\cdots 32}a^{2}-\frac{1}{2}a-\frac{16\cdots 17}{71\cdots 32}$, $\frac{1}{71\cdots 32}a^{19}+\frac{51602553474089}{71\cdots 32}a^{17}-\frac{20\cdots 79}{71\cdots 32}a^{15}-\frac{1}{2}a^{14}+\frac{217033327318747}{71\cdots 32}a^{13}-\frac{1}{2}a^{12}-\frac{296127161199989}{23\cdots 44}a^{11}-\frac{32\cdots 29}{71\cdots 32}a^{9}+\frac{127193463524871}{11\cdots 72}a^{7}-\frac{1}{2}a^{6}+\frac{203080345916521}{593438642823386}a^{5}-\frac{1}{2}a^{4}-\frac{27\cdots 19}{71\cdots 32}a^{3}-\frac{1}{2}a^{2}-\frac{16\cdots 17}{71\cdots 32}a-\frac{1}{2}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
| Rank: | $14$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{47172086387053}{17\cdots 58}a^{18}+\frac{190518188097896}{890157964235079}a^{16}+\frac{16\cdots 15}{17\cdots 58}a^{14}-\frac{309251812024881}{296719321411693}a^{12}-\frac{11\cdots 59}{593438642823386}a^{10}-\frac{22\cdots 49}{890157964235079}a^{8}+\frac{18\cdots 06}{890157964235079}a^{6}+\frac{68\cdots 20}{890157964235079}a^{4}-\frac{63\cdots 99}{17\cdots 58}a^{2}+\frac{262311694307768}{296719321411693}$, $\frac{242545213853977}{11\cdots 72}a^{19}+\frac{19\cdots 01}{11\cdots 72}a^{17}+\frac{82\cdots 85}{11\cdots 72}a^{15}-\frac{10\cdots 49}{11\cdots 72}a^{13}-\frac{17\cdots 27}{11\cdots 72}a^{11}-\frac{22\cdots 41}{11\cdots 72}a^{9}+\frac{10\cdots 67}{593438642823386}a^{7}+\frac{17\cdots 50}{296719321411693}a^{5}-\frac{35\cdots 95}{11\cdots 72}a^{3}+\frac{15\cdots 95}{11\cdots 72}a$, $\frac{4778393269823}{593438642823386}a^{18}+\frac{18533870868986}{296719321411693}a^{16}+\frac{152831205627453}{593438642823386}a^{14}-\frac{121826203622076}{296719321411693}a^{12}-\frac{34\cdots 51}{593438642823386}a^{10}-\frac{17\cdots 48}{296719321411693}a^{8}+\frac{26\cdots 56}{296719321411693}a^{6}+\frac{67\cdots 83}{296719321411693}a^{4}-\frac{10\cdots 57}{593438642823386}a^{2}+\frac{146574718384281}{296719321411693}$, $\frac{33998276105207}{17\cdots 58}a^{18}+\frac{135761594638285}{890157964235079}a^{16}+\frac{11\cdots 65}{17\cdots 58}a^{14}-\frac{241849899353051}{296719321411693}a^{12}-\frac{82\cdots 85}{593438642823386}a^{10}-\frac{15\cdots 26}{890157964235079}a^{8}+\frac{14\cdots 98}{890157964235079}a^{6}+\frac{48\cdots 26}{890157964235079}a^{4}-\frac{53\cdots 41}{17\cdots 58}a^{2}+\frac{444616560271088}{296719321411693}$, $\frac{56805463}{106341482452}a^{18}+\frac{474877661}{106341482452}a^{16}+\frac{2203137379}{106341482452}a^{14}-\frac{769008441}{106341482452}a^{12}-\frac{37869924953}{106341482452}a^{10}-\frac{68635498877}{106341482452}a^{8}-\frac{25170718295}{53170741226}a^{6}+\frac{11079596590}{26585370613}a^{4}-\frac{3114025461}{106341482452}a^{2}+\frac{44078875719}{106341482452}$, $\frac{90676386669625}{35\cdots 16}a^{18}+\frac{120578256785653}{593438642823386}a^{16}+\frac{10\cdots 39}{11\cdots 72}a^{14}-\frac{973210383861022}{890157964235079}a^{12}-\frac{21\cdots 55}{11\cdots 72}a^{10}-\frac{40\cdots 09}{17\cdots 58}a^{8}+\frac{39\cdots 83}{17\cdots 58}a^{6}+\frac{13\cdots 53}{17\cdots 58}a^{4}-\frac{47\cdots 75}{11\cdots 72}a^{2}+\frac{42\cdots 41}{17\cdots 58}$, $\frac{667413837885523}{71\cdots 32}a^{19}-\frac{187336758632801}{71\cdots 32}a^{18}+\frac{17\cdots 13}{23\cdots 44}a^{17}-\frac{506398830414261}{23\cdots 44}a^{16}+\frac{76\cdots 53}{23\cdots 44}a^{15}-\frac{21\cdots 43}{23\cdots 44}a^{14}-\frac{26\cdots 71}{71\cdots 32}a^{13}+\frac{71\cdots 07}{71\cdots 32}a^{12}-\frac{16\cdots 55}{23\cdots 44}a^{11}+\frac{45\cdots 09}{23\cdots 44}a^{10}-\frac{62\cdots 55}{71\cdots 32}a^{9}+\frac{18\cdots 91}{71\cdots 32}a^{8}+\frac{26\cdots 45}{35\cdots 16}a^{7}-\frac{67\cdots 51}{35\cdots 16}a^{6}+\frac{24\cdots 96}{890157964235079}a^{5}-\frac{13\cdots 13}{17\cdots 58}a^{4}-\frac{30\cdots 47}{23\cdots 44}a^{3}+\frac{72\cdots 93}{23\cdots 44}a^{2}+\frac{27\cdots 33}{71\cdots 32}a+\frac{22\cdots 59}{71\cdots 32}$, $\frac{667413837885523}{71\cdots 32}a^{19}+\frac{187336758632801}{71\cdots 32}a^{18}+\frac{17\cdots 13}{23\cdots 44}a^{17}+\frac{506398830414261}{23\cdots 44}a^{16}+\frac{76\cdots 53}{23\cdots 44}a^{15}+\frac{21\cdots 43}{23\cdots 44}a^{14}-\frac{26\cdots 71}{71\cdots 32}a^{13}-\frac{71\cdots 07}{71\cdots 32}a^{12}-\frac{16\cdots 55}{23\cdots 44}a^{11}-\frac{45\cdots 09}{23\cdots 44}a^{10}-\frac{62\cdots 55}{71\cdots 32}a^{9}-\frac{18\cdots 91}{71\cdots 32}a^{8}+\frac{26\cdots 45}{35\cdots 16}a^{7}+\frac{67\cdots 51}{35\cdots 16}a^{6}+\frac{24\cdots 96}{890157964235079}a^{5}+\frac{13\cdots 13}{17\cdots 58}a^{4}-\frac{30\cdots 47}{23\cdots 44}a^{3}-\frac{72\cdots 93}{23\cdots 44}a^{2}+\frac{27\cdots 33}{71\cdots 32}a-\frac{22\cdots 59}{71\cdots 32}$, $\frac{21\cdots 13}{71\cdots 32}a^{19}-\frac{112486476152279}{35\cdots 16}a^{18}+\frac{56\cdots 77}{23\cdots 44}a^{17}-\frac{448560023462023}{17\cdots 58}a^{16}+\frac{23\cdots 11}{23\cdots 44}a^{15}-\frac{38\cdots 73}{35\cdots 16}a^{14}-\frac{86\cdots 15}{71\cdots 32}a^{13}+\frac{804148904996351}{593438642823386}a^{12}-\frac{50\cdots 25}{23\cdots 44}a^{11}+\frac{27\cdots 45}{11\cdots 72}a^{10}-\frac{19\cdots 87}{71\cdots 32}a^{9}+\frac{49\cdots 37}{17\cdots 58}a^{8}+\frac{85\cdots 53}{35\cdots 16}a^{7}-\frac{24\cdots 93}{890157964235079}a^{6}+\frac{76\cdots 17}{890157964235079}a^{5}-\frac{81\cdots 70}{890157964235079}a^{4}-\frac{10\cdots 13}{23\cdots 44}a^{3}+\frac{17\cdots 41}{35\cdots 16}a^{2}+\frac{14\cdots 41}{71\cdots 32}a-\frac{819416505653929}{296719321411693}$, $\frac{31\cdots 71}{71\cdots 32}a^{19}-\frac{419913916342219}{71\cdots 32}a^{18}+\frac{25\cdots 33}{71\cdots 32}a^{17}-\frac{11\cdots 11}{23\cdots 44}a^{16}+\frac{10\cdots 67}{71\cdots 32}a^{15}-\frac{47\cdots 37}{23\cdots 44}a^{14}-\frac{13\cdots 01}{71\cdots 32}a^{13}+\frac{17\cdots 17}{71\cdots 32}a^{12}-\frac{76\cdots 99}{23\cdots 44}a^{11}+\frac{10\cdots 43}{23\cdots 44}a^{10}-\frac{28\cdots 09}{71\cdots 32}a^{9}+\frac{37\cdots 17}{71\cdots 32}a^{8}+\frac{43\cdots 51}{11\cdots 72}a^{7}-\frac{18\cdots 33}{35\cdots 16}a^{6}+\frac{76\cdots 69}{593438642823386}a^{5}-\frac{30\cdots 75}{17\cdots 58}a^{4}-\frac{47\cdots 29}{71\cdots 32}a^{3}+\frac{22\cdots 59}{23\cdots 44}a^{2}+\frac{28\cdots 95}{71\cdots 32}a-\frac{34\cdots 91}{71\cdots 32}$, $\frac{13\cdots 45}{23\cdots 44}a^{19}+\frac{8762287453913}{35\cdots 16}a^{18}+\frac{33\cdots 49}{71\cdots 32}a^{17}+\frac{64656272940967}{35\cdots 16}a^{16}+\frac{14\cdots 23}{71\cdots 32}a^{15}+\frac{254288554834219}{35\cdots 16}a^{14}-\frac{16\cdots 49}{71\cdots 32}a^{13}-\frac{555611258560897}{35\cdots 16}a^{12}-\frac{10\cdots 83}{23\cdots 44}a^{11}-\frac{20\cdots 45}{11\cdots 72}a^{10}-\frac{12\cdots 67}{23\cdots 44}a^{9}-\frac{40\cdots 11}{35\cdots 16}a^{8}+\frac{16\cdots 11}{35\cdots 16}a^{7}+\frac{10\cdots 58}{296719321411693}a^{6}+\frac{15\cdots 23}{890157964235079}a^{5}+\frac{35\cdots 17}{593438642823386}a^{4}-\frac{59\cdots 33}{71\cdots 32}a^{3}-\frac{27\cdots 89}{35\cdots 16}a^{2}+\frac{25\cdots 71}{71\cdots 32}a+\frac{90\cdots 15}{35\cdots 16}$, $\frac{368310919289897}{11\cdots 72}a^{19}+\frac{12755202317913}{23\cdots 44}a^{18}+\frac{44\cdots 55}{17\cdots 58}a^{17}+\frac{352429018265933}{71\cdots 32}a^{16}+\frac{37\cdots 89}{35\cdots 16}a^{15}+\frac{16\cdots 47}{71\cdots 32}a^{14}-\frac{23\cdots 43}{17\cdots 58}a^{13}+\frac{122086041136907}{71\cdots 32}a^{12}-\frac{26\cdots 37}{11\cdots 72}a^{11}-\frac{96\cdots 11}{23\cdots 44}a^{10}-\frac{16\cdots 95}{593438642823386}a^{9}-\frac{22\cdots 55}{23\cdots 44}a^{8}+\frac{23\cdots 94}{890157964235079}a^{7}-\frac{11\cdots 73}{35\cdots 16}a^{6}+\frac{80\cdots 49}{890157964235079}a^{5}+\frac{16\cdots 18}{890157964235079}a^{4}-\frac{16\cdots 21}{35\cdots 16}a^{3}+\frac{84\cdots 39}{71\cdots 32}a^{2}+\frac{13\cdots 80}{890157964235079}a-\frac{70\cdots 81}{71\cdots 32}$, $\frac{256046693280037}{17\cdots 58}a^{19}-\frac{381707088771299}{71\cdots 32}a^{18}+\frac{10\cdots 88}{890157964235079}a^{17}-\frac{10\cdots 57}{23\cdots 44}a^{16}+\frac{44\cdots 82}{890157964235079}a^{15}-\frac{44\cdots 05}{23\cdots 44}a^{14}-\frac{99\cdots 67}{17\cdots 58}a^{13}+\frac{14\cdots 35}{71\cdots 32}a^{12}-\frac{62\cdots 95}{593438642823386}a^{11}+\frac{92\cdots 51}{23\cdots 44}a^{10}-\frac{12\cdots 47}{890157964235079}a^{9}+\frac{38\cdots 99}{71\cdots 32}a^{8}+\frac{64\cdots 15}{593438642823386}a^{7}-\frac{13\cdots 95}{35\cdots 16}a^{6}+\frac{25\cdots 09}{593438642823386}a^{5}-\frac{28\cdots 77}{17\cdots 58}a^{4}-\frac{16\cdots 67}{890157964235079}a^{3}+\frac{14\cdots 43}{23\cdots 44}a^{2}-\frac{10\cdots 67}{17\cdots 58}a+\frac{19\cdots 35}{71\cdots 32}$, $\frac{470877565040395}{23\cdots 44}a^{19}+\frac{40609220342977}{890157964235079}a^{18}+\frac{11\cdots 17}{71\cdots 32}a^{17}+\frac{657084090003097}{17\cdots 58}a^{16}+\frac{47\cdots 29}{71\cdots 32}a^{15}+\frac{28\cdots 57}{17\cdots 58}a^{14}-\frac{59\cdots 41}{71\cdots 32}a^{13}-\frac{15\cdots 24}{890157964235079}a^{12}-\frac{34\cdots 41}{23\cdots 44}a^{11}-\frac{98\cdots 94}{296719321411693}a^{10}-\frac{42\cdots 07}{23\cdots 44}a^{9}-\frac{78\cdots 73}{17\cdots 58}a^{8}+\frac{59\cdots 37}{35\cdots 16}a^{7}+\frac{19\cdots 45}{593438642823386}a^{6}+\frac{10\cdots 47}{17\cdots 58}a^{5}+\frac{78\cdots 63}{593438642823386}a^{4}-\frac{21\cdots 63}{71\cdots 32}a^{3}-\frac{10\cdots 33}{17\cdots 58}a^{2}+\frac{14\cdots 27}{71\cdots 32}a+\frac{19\cdots 57}{890157964235079}$
|
| |
| Regulator: | \( 179247197.076 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{10}\cdot(2\pi)^{5}\cdot 179247197.076 \cdot 1}{2\cdot\sqrt{4432204969617689467720296300544}}\cr\approx \mathstrut & 0.426885848391 \end{aligned}\] (assuming GRH)
Galois group
$C_2^9.(C_2\times S_5)$ (as 20T797):
| A non-solvable group of order 122880 |
| The 108 conjugacy class representatives for $C_2^9.(C_2\times S_5)$ |
| Character table for $C_2^9.(C_2\times S_5)$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), 5.3.31684.1, 10.6.8223751012352.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
| Minimal sibling: | 20.8.34626601325138198966564814848.2 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.12.0.1}{12} }{,}\,{\href{/padicField/3.4.0.1}{4} }^{2}$ | ${\href{/padicField/5.10.0.1}{10} }^{2}$ | ${\href{/padicField/7.4.0.1}{4} }{,}\,{\href{/padicField/7.3.0.1}{3} }^{4}{,}\,{\href{/padicField/7.2.0.1}{2} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }^{5}$ | ${\href{/padicField/13.10.0.1}{10} }^{2}$ | ${\href{/padicField/17.10.0.1}{10} }^{2}$ | ${\href{/padicField/19.6.0.1}{6} }^{2}{,}\,{\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}$ | ${\href{/padicField/23.8.0.1}{8} }{,}\,{\href{/padicField/23.4.0.1}{4} }^{2}{,}\,{\href{/padicField/23.1.0.1}{1} }^{4}$ | ${\href{/padicField/29.6.0.1}{6} }^{2}{,}\,{\href{/padicField/29.4.0.1}{4} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }{,}\,{\href{/padicField/31.3.0.1}{3} }^{4}{,}\,{\href{/padicField/31.2.0.1}{2} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{6}$ | ${\href{/padicField/41.5.0.1}{5} }^{4}$ | ${\href{/padicField/43.12.0.1}{12} }{,}\,{\href{/padicField/43.4.0.1}{4} }^{2}$ | ${\href{/padicField/47.8.0.1}{8} }^{2}{,}\,{\href{/padicField/47.2.0.1}{2} }{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.10.0.1}{10} }^{2}$ | ${\href{/padicField/59.8.0.1}{8} }{,}\,{\href{/padicField/59.4.0.1}{4} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.8.20d1.1 | $x^{8} + 4 x^{5} + 2 x^{4} + 2$ | $8$ | $1$ | $20$ | $Q_8:C_2$ | $$[2, 3, 3]^{2}$$ |
| 2.3.4.30a2.83 | $x^{12} + 8 x^{10} + 4 x^{9} + 22 x^{8} + 24 x^{7} + 34 x^{6} + 52 x^{5} + 41 x^{4} + 44 x^{3} + 34 x^{2} + 16 x + 7$ | $4$ | $3$ | $30$ | 12T134 | $$[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{7}{2}]^{3}$$ | |
|
\(89\)
| 89.2.1.0a1.1 | $x^{2} + 82 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 89.2.1.0a1.1 | $x^{2} + 82 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 89.1.3.2a1.1 | $x^{3} + 89$ | $3$ | $1$ | $2$ | $S_3$ | $$[\ ]_{3}^{2}$$ | |
| 89.1.3.2a1.1 | $x^{3} + 89$ | $3$ | $1$ | $2$ | $S_3$ | $$[\ ]_{3}^{2}$$ | |
| 89.4.1.0a1.1 | $x^{4} + 4 x^{2} + 72 x + 3$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | |
| 89.2.3.4a1.2 | $x^{6} + 246 x^{5} + 20181 x^{4} + 552844 x^{3} + 60543 x^{2} + 2214 x + 116$ | $3$ | $2$ | $4$ | $S_3$ | $$[\ ]_{3}^{2}$$ |