Normalized defining polynomial
\( x^{20} - 15 x^{18} - 5 x^{17} + 91 x^{16} + 102 x^{15} - 500 x^{14} - 284 x^{13} + 1753 x^{12} + 51 x^{11} - 3389 x^{10} - 989 x^{9} + 6988 x^{8} + 308 x^{7} - 8168 x^{6} + 3547 x^{5} + 354 x^{4} + 428 x^{3} + 352 x^{2} - 912 x + 288 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-44145664201696349530694455706624=-\,2^{10}\cdot 401^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.22$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{6} a^{16} + \frac{1}{3} a^{15} - \frac{1}{2} a^{14} + \frac{1}{6} a^{13} + \frac{1}{6} a^{12} - \frac{1}{3} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{6} a^{8} - \frac{1}{2} a^{7} - \frac{1}{6} a^{6} + \frac{1}{6} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{6} a$, $\frac{1}{36} a^{17} + \frac{1}{18} a^{16} - \frac{5}{12} a^{15} - \frac{11}{36} a^{14} + \frac{13}{36} a^{13} + \frac{4}{9} a^{12} - \frac{2}{9} a^{11} + \frac{4}{9} a^{10} - \frac{11}{36} a^{9} - \frac{1}{12} a^{8} + \frac{5}{36} a^{7} + \frac{13}{36} a^{6} - \frac{7}{18} a^{5} - \frac{2}{9} a^{4} - \frac{2}{9} a^{3} - \frac{17}{36} a^{2} - \frac{1}{3} a$, $\frac{1}{72} a^{18} + \frac{5}{72} a^{16} - \frac{5}{72} a^{15} - \frac{1}{72} a^{14} - \frac{11}{36} a^{13} - \frac{2}{9} a^{12} + \frac{5}{18} a^{11} + \frac{17}{72} a^{10} - \frac{29}{72} a^{9} - \frac{1}{72} a^{8} - \frac{11}{24} a^{7} + \frac{1}{9} a^{6} + \frac{1}{9} a^{5} + \frac{4}{9} a^{4} - \frac{13}{72} a^{3} + \frac{5}{36} a^{2} - \frac{1}{3} a$, $\frac{1}{93515389276084163367085822896} a^{19} + \frac{254403252370682596293324791}{46757694638042081683542911448} a^{18} - \frac{1208246525386685365390763651}{93515389276084163367085822896} a^{17} - \frac{5473149581838327015570452759}{93515389276084163367085822896} a^{16} + \frac{10947607415447068385956188187}{31171796425361387789028607632} a^{15} + \frac{1238648704414076000289162655}{7792949106340346947257151908} a^{14} + \frac{206305081848464308293438503}{7792949106340346947257151908} a^{13} + \frac{584999189189995369859711673}{2597649702113448982419050636} a^{12} + \frac{1667084635492818438451211995}{31171796425361387789028607632} a^{11} + \frac{3609431990234169075796231937}{93515389276084163367085822896} a^{10} + \frac{31393685171179745764749270281}{93515389276084163367085822896} a^{9} + \frac{21035209480030474082035752017}{93515389276084163367085822896} a^{8} - \frac{2404311717560157943657656003}{5195299404226897964838101272} a^{7} + \frac{575955485951568809170528909}{1948237276585086736814287977} a^{6} - \frac{412991010319776271275597809}{1948237276585086736814287977} a^{5} + \frac{9667399337341417331183863129}{31171796425361387789028607632} a^{4} - \frac{10959565910055213382228609297}{23378847319021040841771455724} a^{3} + \frac{255827114089914340834881749}{7792949106340346947257151908} a^{2} + \frac{740274070695117262212906103}{1948237276585086736814287977} a - \frac{131711049753517908512968246}{649412425528362245604762659}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 524184433.752 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 163840 |
| The 277 conjugacy class representatives for t20n852 are not computed |
| Character table for t20n852 is not computed |
Intermediate fields
| 5.5.160801.1, 10.6.10368641602001.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.10.10.10 | $x^{10} - 11 x^{8} + 10 x^{6} - 62 x^{4} + 21 x^{2} - 55$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2, 2]^{5}$ | |
| 401 | Data not computed | ||||||