Normalized defining polynomial
\( x^{20} - 8 x^{19} + 10 x^{18} + 68 x^{17} - 238 x^{16} + 174 x^{15} + 984 x^{14} - 4306 x^{13} + 6353 x^{12} + 1930 x^{11} - 15570 x^{10} + 12248 x^{9} + 8177 x^{8} - 15564 x^{7} + 768 x^{6} + 6272 x^{5} - 465 x^{4} - 954 x^{3} - 134 x^{2} + 48 x + 13 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-44145664201696349530694455706624=-\,2^{10}\cdot 401^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.22$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{6} a^{10} + \frac{1}{3} a^{7} - \frac{1}{6} a^{6} - \frac{1}{3} a^{5} - \frac{1}{6} a^{4} - \frac{1}{6} a^{2} - \frac{1}{3} a - \frac{1}{2}$, $\frac{1}{6} a^{11} + \frac{1}{3} a^{8} - \frac{1}{6} a^{7} - \frac{1}{3} a^{6} - \frac{1}{6} a^{5} - \frac{1}{6} a^{3} - \frac{1}{3} a^{2} - \frac{1}{2} a$, $\frac{1}{6} a^{12} - \frac{1}{6} a^{8} - \frac{1}{3} a^{7} + \frac{1}{6} a^{6} + \frac{1}{3} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{6} a^{13} - \frac{1}{6} a^{9} - \frac{1}{3} a^{8} + \frac{1}{6} a^{7} + \frac{1}{3} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{6} a^{14} + \frac{1}{6} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{2} a^{2} + \frac{1}{3} a - \frac{1}{6}$, $\frac{1}{36} a^{15} + \frac{1}{18} a^{14} - \frac{1}{12} a^{13} + \frac{1}{36} a^{12} - \frac{1}{18} a^{11} - \frac{1}{12} a^{10} + \frac{13}{36} a^{8} - \frac{13}{36} a^{7} + \frac{1}{18} a^{6} + \frac{1}{36} a^{5} - \frac{2}{9} a^{4} - \frac{1}{2} a^{3} + \frac{1}{6} a^{2} - \frac{5}{12} a - \frac{5}{36}$, $\frac{1}{36} a^{16} - \frac{1}{36} a^{14} + \frac{1}{36} a^{13} + \frac{1}{18} a^{12} + \frac{1}{36} a^{11} - \frac{5}{36} a^{9} + \frac{1}{4} a^{8} - \frac{7}{18} a^{7} - \frac{5}{12} a^{6} - \frac{1}{9} a^{5} - \frac{7}{18} a^{4} + \frac{1}{3} a^{3} + \frac{1}{12} a^{2} - \frac{11}{36} a - \frac{7}{18}$, $\frac{1}{36} a^{17} - \frac{1}{12} a^{14} - \frac{1}{36} a^{13} + \frac{1}{18} a^{12} - \frac{1}{18} a^{11} - \frac{1}{18} a^{10} - \frac{1}{12} a^{9} - \frac{7}{36} a^{8} - \frac{1}{9} a^{7} + \frac{1}{9} a^{6} + \frac{11}{36} a^{5} - \frac{1}{18} a^{4} - \frac{1}{12} a^{3} + \frac{7}{36} a^{2} - \frac{5}{36} a + \frac{7}{36}$, $\frac{1}{108} a^{18} - \frac{1}{108} a^{17} + \frac{1}{108} a^{16} - \frac{1}{108} a^{15} - \frac{1}{108} a^{14} - \frac{1}{54} a^{13} + \frac{1}{18} a^{12} - \frac{1}{36} a^{11} + \frac{5}{108} a^{10} + \frac{5}{36} a^{9} + \frac{13}{54} a^{8} - \frac{2}{27} a^{7} - \frac{17}{54} a^{6} + \frac{1}{12} a^{5} + \frac{11}{108} a^{4} - \frac{1}{54} a^{3} - \frac{5}{12} a^{2} + \frac{31}{108} a - \frac{13}{108}$, $\frac{1}{13336726276528434429056388} a^{19} - \frac{2932660067996340235937}{6668363138264217214528194} a^{18} - \frac{47436733998041761063607}{13336726276528434429056388} a^{17} - \frac{117022294658327768844937}{13336726276528434429056388} a^{16} + \frac{20598220537695707835389}{13336726276528434429056388} a^{15} + \frac{1069996548117292857191917}{13336726276528434429056388} a^{14} - \frac{30612052962847841210181}{493952825056608682557644} a^{13} + \frac{128098770205075916295359}{2222787712754739071509398} a^{12} + \frac{129820532912534582239937}{13336726276528434429056388} a^{11} - \frac{4399677763385378168077}{77992551324727686719628} a^{10} + \frac{1190055838562807988724007}{13336726276528434429056388} a^{9} + \frac{2853943604775280307131963}{13336726276528434429056388} a^{8} - \frac{3306698813503642682781403}{13336726276528434429056388} a^{7} + \frac{38355932842812151517245}{123488206264152170639411} a^{6} - \frac{920436489552230766567221}{6668363138264217214528194} a^{5} - \frac{4740989100974200590391943}{13336726276528434429056388} a^{4} + \frac{434404811728379280599960}{1111393856377369535754699} a^{3} + \frac{2157870895278119219479349}{6668363138264217214528194} a^{2} - \frac{41134824364869848581159}{168819319956056132013372} a + \frac{1166055939984819434093467}{4445575425509478143018796}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 526980660.612 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 163840 |
| The 277 conjugacy class representatives for t20n852 are not computed |
| Character table for t20n852 is not computed |
Intermediate fields
| 5.5.160801.1, 10.6.10368641602001.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.10.10.9 | $x^{10} - 15 x^{8} + 38 x^{6} - 18 x^{4} + 25 x^{2} - 63$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2, 2]^{5}$ | |
| 401 | Data not computed | ||||||