Normalized defining polynomial
\( x^{20} - 5 x^{18} - 27 x^{17} - 62 x^{16} + 423 x^{15} + 777 x^{14} - 2789 x^{13} - 4392 x^{12} + 9673 x^{11} + 15480 x^{10} - 15437 x^{9} - 34067 x^{8} + 2410 x^{7} + 40199 x^{6} + 17493 x^{5} - 13433 x^{4} - 13515 x^{3} - 3557 x^{2} + 81 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-44145664201696349530694455706624=-\,2^{10}\cdot 401^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.22$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{6} a^{16} - \frac{1}{6} a^{15} - \frac{1}{6} a^{14} - \frac{1}{2} a^{13} + \frac{1}{3} a^{12} - \frac{1}{6} a^{11} - \frac{1}{3} a^{10} + \frac{1}{6} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{6} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{2} a^{3} + \frac{1}{6} a - \frac{1}{2}$, $\frac{1}{6} a^{17} + \frac{1}{6} a^{15} + \frac{1}{3} a^{14} + \frac{1}{3} a^{13} + \frac{1}{6} a^{12} - \frac{1}{2} a^{11} + \frac{1}{3} a^{10} + \frac{1}{6} a^{9} - \frac{1}{6} a^{7} + \frac{1}{6} a^{6} + \frac{1}{6} a^{5} + \frac{1}{3} a^{4} + \frac{1}{6} a^{2} - \frac{1}{3} a$, $\frac{1}{414} a^{18} + \frac{7}{414} a^{17} + \frac{16}{207} a^{16} + \frac{22}{207} a^{15} - \frac{1}{2} a^{14} + \frac{17}{69} a^{13} + \frac{10}{23} a^{12} - \frac{100}{207} a^{11} + \frac{121}{414} a^{10} - \frac{26}{207} a^{9} + \frac{1}{207} a^{8} - \frac{11}{138} a^{7} - \frac{167}{414} a^{6} - \frac{157}{414} a^{5} + \frac{59}{207} a^{4} + \frac{62}{207} a^{3} - \frac{181}{414} a^{2} + \frac{83}{414} a - \frac{5}{46}$, $\frac{1}{7893772399240439051017061007649974} a^{19} - \frac{9178417010602044259755113360483}{7893772399240439051017061007649974} a^{18} - \frac{19963527437893556781174555513047}{343207495619149523957263522071738} a^{17} + \frac{22859795609393472218902454190619}{303606630740016886577579269524999} a^{16} + \frac{42240132412931385888849026279456}{438542911068913280612058944869443} a^{15} + \frac{58165770808354429298013175950532}{1315628733206739841836176834608329} a^{14} - \frac{6364965100266579654133300811672}{146180970356304426870686314956481} a^{13} + \frac{2536537274818174871001914292819757}{7893772399240439051017061007649974} a^{12} - \frac{456317080398308368526661379140682}{3946886199620219525508530503824987} a^{11} + \frac{1436481417544894531193079095682904}{3946886199620219525508530503824987} a^{10} + \frac{1409911299916518069056597286301475}{7893772399240439051017061007649974} a^{9} + \frac{39882215047679062740205464215291}{877085822137826561224117889738886} a^{8} + \frac{174445541165078479222875386785901}{3946886199620219525508530503824987} a^{7} - \frac{1380744894095910155990021449890950}{3946886199620219525508530503824987} a^{6} + \frac{493105439585940939155910595613779}{7893772399240439051017061007649974} a^{5} - \frac{1734450592402713313841440560412696}{3946886199620219525508530503824987} a^{4} - \frac{1092186947593778015807542585565107}{7893772399240439051017061007649974} a^{3} + \frac{318773349001129291537490064772213}{3946886199620219525508530503824987} a^{2} + \frac{473921545660642510016704723973677}{2631257466413479683672353669216658} a + \frac{3950357032140618028164075855190}{146180970356304426870686314956481}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 410603324.945 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 10240 |
| The 160 conjugacy class representatives for t20n423 are not computed |
| Character table for t20n423 is not computed |
Intermediate fields
| \(\Q(\sqrt{401}) \), 5.5.160801.1 x5, 10.10.10368641602001.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.10.10.9 | $x^{10} - 15 x^{8} + 38 x^{6} - 18 x^{4} + 25 x^{2} - 63$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2, 2]^{5}$ | |
| 401 | Data not computed | ||||||