Normalized defining polynomial
\( x^{20} - 10 x^{18} - 56 x^{16} + 531 x^{14} + 897 x^{12} - 7444 x^{10} - 7334 x^{8} + 34068 x^{6} + 26408 x^{4} - 46917 x^{2} - 32481 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-44145664201696349530694455706624=-\,2^{10}\cdot 401^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.22$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{9} + \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{10} + \frac{1}{3} a^{4} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{9} + \frac{1}{3} a^{5} - \frac{1}{3} a$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{10} + \frac{1}{3} a^{6} - \frac{1}{3} a^{2}$, $\frac{1}{6} a^{15} - \frac{1}{6} a^{14} - \frac{1}{6} a^{13} + \frac{1}{6} a^{10} - \frac{1}{2} a^{8} + \frac{1}{6} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{6} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{498} a^{16} + \frac{22}{249} a^{14} - \frac{1}{6} a^{13} - \frac{8}{83} a^{12} - \frac{1}{6} a^{11} + \frac{51}{166} a^{10} - \frac{1}{6} a^{9} + \frac{116}{249} a^{8} - \frac{1}{2} a^{7} - \frac{77}{249} a^{6} + \frac{1}{3} a^{5} + \frac{34}{83} a^{4} - \frac{1}{6} a^{3} + \frac{39}{83} a^{2} + \frac{1}{3} a + \frac{35}{166}$, $\frac{1}{498} a^{17} - \frac{13}{166} a^{15} + \frac{35}{498} a^{13} - \frac{1}{6} a^{12} - \frac{13}{498} a^{11} - \frac{1}{3} a^{10} - \frac{50}{249} a^{9} - \frac{79}{166} a^{7} + \frac{19}{249} a^{5} - \frac{1}{6} a^{4} + \frac{34}{249} a^{3} + \frac{1}{6} a^{2} + \frac{11}{249} a - \frac{1}{2}$, $\frac{1}{4550567398913735658} a^{18} - \frac{1116039427904231}{2275283699456867829} a^{16} - \frac{336419033131219103}{4550567398913735658} a^{14} - \frac{6432076861459555}{505618599879303962} a^{12} - \frac{1}{6} a^{11} - \frac{41913924982521743}{505618599879303962} a^{10} + \frac{1}{6} a^{9} - \frac{393239312759917825}{4550567398913735658} a^{8} - \frac{1}{2} a^{7} + \frac{697944367364979224}{2275283699456867829} a^{6} - \frac{1}{2} a^{5} - \frac{239555822726673919}{758427899818955943} a^{4} + \frac{1}{3} a^{3} - \frac{344071669104269345}{2275283699456867829} a^{2} + \frac{1}{6} a + \frac{119931808246458719}{505618599879303962}$, $\frac{1}{13651702196741206974} a^{19} + \frac{6905606684178959}{13651702196741206974} a^{17} + \frac{412033515223591682}{6825851098370603487} a^{15} + \frac{98821450099129757}{758427899818955943} a^{13} - \frac{335478506083407341}{2275283699456867829} a^{11} - \frac{1}{2} a^{10} + \frac{1726703732517163847}{13651702196741206974} a^{9} - \frac{1}{2} a^{8} + \frac{5297680460304587215}{13651702196741206974} a^{7} - \frac{1}{2} a^{6} - \frac{687302414186057548}{2275283699456867829} a^{5} - \frac{1}{2} a^{4} + \frac{17873077577026685}{82239169859886789} a^{3} - \frac{26271160393340017}{1516855799637911886} a - \frac{1}{2}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 272546109.994 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 10240 |
| The 160 conjugacy class representatives for t20n423 are not computed |
| Character table for t20n423 is not computed |
Intermediate fields
| \(\Q(\sqrt{401}) \), 5.5.160801.1 x5, 10.10.10368641602001.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.10.10.8 | $x^{10} + x^{8} - 2 x^{6} - 2 x^{4} + x^{2} + 33$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2, 2]^{5}$ | |
| 401 | Data not computed | ||||||