Normalized defining polynomial
\( x^{20} - 4 x^{19} - 10 x^{18} + 54 x^{17} - 55 x^{16} + 296 x^{15} - 1529 x^{14} + 2175 x^{13} + 2079 x^{12} - 9305 x^{11} + 8524 x^{10} + 3223 x^{9} - 11868 x^{8} + 7423 x^{7} + 846 x^{6} - 2398 x^{5} + 279 x^{4} + 97 x^{3} + 354 x^{2} - 122 x - 61 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-4305926880688359795034353497883=-\,3^{5}\cdot 61^{10}\cdot 397^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $34.02$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 61, 397$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{11} a^{18} - \frac{5}{11} a^{17} - \frac{2}{11} a^{16} - \frac{3}{11} a^{15} - \frac{3}{11} a^{14} + \frac{4}{11} a^{13} - \frac{2}{11} a^{12} + \frac{5}{11} a^{10} - \frac{4}{11} a^{9} - \frac{4}{11} a^{8} + \frac{3}{11} a^{7} - \frac{3}{11} a^{6} - \frac{1}{11} a^{5} + \frac{2}{11} a^{4} - \frac{5}{11} a^{3} + \frac{4}{11} a^{2} + \frac{1}{11} a + \frac{2}{11}$, $\frac{1}{544287981329147463021484070519} a^{19} + \frac{737304851250838031664430458}{49480725575377042092862188229} a^{18} + \frac{29407518640791826193941163679}{544287981329147463021484070519} a^{17} + \frac{73270418085468234611888060316}{544287981329147463021484070519} a^{16} + \frac{133507735636266039667547420320}{544287981329147463021484070519} a^{15} - \frac{6691303439846546526970980380}{49480725575377042092862188229} a^{14} - \frac{133918855051744636993463180313}{544287981329147463021484070519} a^{13} - \frac{682597325780524335436870707}{3146173302480621173534590003} a^{12} + \frac{242388919749193974443377986982}{544287981329147463021484070519} a^{11} - \frac{84207677156859820947664725269}{544287981329147463021484070519} a^{10} + \frac{192718950673244365303070634858}{544287981329147463021484070519} a^{9} + \frac{246643100675233886634199605146}{544287981329147463021484070519} a^{8} + \frac{62936923735441738127137631772}{544287981329147463021484070519} a^{7} - \frac{201486933111608265039470867639}{544287981329147463021484070519} a^{6} - \frac{67039426572437197469238951889}{544287981329147463021484070519} a^{5} - \frac{41872333579452853417302332812}{544287981329147463021484070519} a^{4} - \frac{51875769089078808599546068522}{544287981329147463021484070519} a^{3} + \frac{13015813281363919939780098681}{544287981329147463021484070519} a^{2} + \frac{196502754514424533158122958452}{544287981329147463021484070519} a - \frac{219569706928521090947748433536}{544287981329147463021484070519}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 111873681.334 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 15360 |
| The 90 conjugacy class representatives for t20n466 are not computed |
| Character table for t20n466 is not computed |
Intermediate fields
| \(\Q(\sqrt{61}) \), 5.5.24217.1, 10.10.133115978404309.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.5.0.1 | $x^{5} - x + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 3.5.0.1 | $x^{5} - x + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 61 | Data not computed | ||||||
| 397 | Data not computed | ||||||