Normalized defining polynomial
\( x^{20} - 14 x^{18} - 76 x^{16} + 1496 x^{14} - 448 x^{12} - 50912 x^{10} + 157632 x^{8} + 410112 x^{6} - 3109888 x^{4} + 5722112 x^{2} - 3398656 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-4223146772847631783690240000000000=-\,2^{30}\cdot 5^{10}\cdot 3319^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $48.00$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 3319$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{8} a^{6}$, $\frac{1}{8} a^{7}$, $\frac{1}{16} a^{8}$, $\frac{1}{16} a^{9}$, $\frac{1}{32} a^{10}$, $\frac{1}{32} a^{11}$, $\frac{1}{192} a^{12} + \frac{1}{96} a^{10} + \frac{1}{48} a^{8} + \frac{1}{24} a^{6} + \frac{1}{6} a^{2} + \frac{1}{3}$, $\frac{1}{192} a^{13} + \frac{1}{96} a^{11} + \frac{1}{48} a^{9} + \frac{1}{24} a^{7} + \frac{1}{6} a^{3} + \frac{1}{3} a$, $\frac{1}{384} a^{14} - \frac{1}{24} a^{6} + \frac{1}{12} a^{4} - \frac{1}{3}$, $\frac{1}{384} a^{15} - \frac{1}{24} a^{7} + \frac{1}{12} a^{5} - \frac{1}{3} a$, $\frac{1}{2304} a^{16} + \frac{1}{1152} a^{14} - \frac{1}{144} a^{8} + \frac{1}{24} a^{6} + \frac{1}{36} a^{4} - \frac{2}{9} a^{2} - \frac{1}{9}$, $\frac{1}{2304} a^{17} + \frac{1}{1152} a^{15} - \frac{1}{144} a^{9} + \frac{1}{24} a^{7} + \frac{1}{36} a^{5} - \frac{2}{9} a^{3} - \frac{1}{9} a$, $\frac{1}{8753189322253824} a^{18} + \frac{78578771135}{364716221760576} a^{16} - \frac{921687564865}{2188297330563456} a^{14} + \frac{65906395391}{60786036960096} a^{12} + \frac{2805050934265}{273537166320432} a^{10} + \frac{217393085161}{39076738045776} a^{8} + \frac{5614051554313}{136768583160216} a^{6} - \frac{5512195217789}{68384291580108} a^{4} + \frac{2159302522199}{11397381930018} a^{2} - \frac{4167234040397}{17096072895027}$, $\frac{1}{8753189322253824} a^{19} + \frac{78578771135}{364716221760576} a^{17} - \frac{921687564865}{2188297330563456} a^{15} + \frac{65906395391}{60786036960096} a^{13} + \frac{2805050934265}{273537166320432} a^{11} + \frac{217393085161}{39076738045776} a^{9} + \frac{5614051554313}{136768583160216} a^{7} - \frac{5512195217789}{68384291580108} a^{5} + \frac{2159302522199}{11397381930018} a^{3} - \frac{4167234040397}{17096072895027} a$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1284399186.05 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 102400 |
| The 130 conjugacy class representatives for t20n756 are not computed |
| Character table for t20n756 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.6.34424253125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 3319 | Data not computed | ||||||