Properties

Label 20.10.4175899735...4375.1
Degree $20$
Signature $[10, 5]$
Discriminant $-\,5^{10}\cdot 3359^{5}$
Root discriminant $17.02$
Ramified primes $5, 3359$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $D_5\wr C_2$ (as 20T48)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -13, 45, 70, -456, -330, 1065, 268, -1480, 107, 1168, -341, -467, 275, 48, -111, 31, 23, -11, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 2*x^19 - 11*x^18 + 23*x^17 + 31*x^16 - 111*x^15 + 48*x^14 + 275*x^13 - 467*x^12 - 341*x^11 + 1168*x^10 + 107*x^9 - 1480*x^8 + 268*x^7 + 1065*x^6 - 330*x^5 - 456*x^4 + 70*x^3 + 45*x^2 - 13*x + 1)
 
gp: K = bnfinit(x^20 - 2*x^19 - 11*x^18 + 23*x^17 + 31*x^16 - 111*x^15 + 48*x^14 + 275*x^13 - 467*x^12 - 341*x^11 + 1168*x^10 + 107*x^9 - 1480*x^8 + 268*x^7 + 1065*x^6 - 330*x^5 - 456*x^4 + 70*x^3 + 45*x^2 - 13*x + 1, 1)
 

Normalized defining polynomial

\( x^{20} - 2 x^{19} - 11 x^{18} + 23 x^{17} + 31 x^{16} - 111 x^{15} + 48 x^{14} + 275 x^{13} - 467 x^{12} - 341 x^{11} + 1168 x^{10} + 107 x^{9} - 1480 x^{8} + 268 x^{7} + 1065 x^{6} - 330 x^{5} - 456 x^{4} + 70 x^{3} + 45 x^{2} - 13 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[10, 5]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-4175899735297664052734375=-\,5^{10}\cdot 3359^{5}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $17.02$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 3359$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{29} a^{18} + \frac{6}{29} a^{17} + \frac{7}{29} a^{16} - \frac{14}{29} a^{15} - \frac{1}{29} a^{14} + \frac{11}{29} a^{13} - \frac{8}{29} a^{12} - \frac{3}{29} a^{11} + \frac{10}{29} a^{10} + \frac{3}{29} a^{9} - \frac{7}{29} a^{8} - \frac{10}{29} a^{7} + \frac{13}{29} a^{6} + \frac{5}{29} a^{5} - \frac{10}{29} a^{4} - \frac{9}{29} a^{3} + \frac{4}{29} a^{2} - \frac{5}{29} a + \frac{1}{29}$, $\frac{1}{926394383617074089} a^{19} - \frac{12142091053754957}{926394383617074089} a^{18} + \frac{104635434902363236}{926394383617074089} a^{17} - \frac{36124521905853043}{926394383617074089} a^{16} + \frac{63803816984656142}{926394383617074089} a^{15} - \frac{364372664090881846}{926394383617074089} a^{14} + \frac{158384673036536493}{926394383617074089} a^{13} - \frac{398425914069610452}{926394383617074089} a^{12} + \frac{360624798603777909}{926394383617074089} a^{11} + \frac{245098805790538186}{926394383617074089} a^{10} + \frac{187342217621257651}{926394383617074089} a^{9} + \frac{43249910586974174}{926394383617074089} a^{8} + \frac{211127391364622795}{926394383617074089} a^{7} - \frac{116667251704081285}{926394383617074089} a^{6} + \frac{95747215839314037}{926394383617074089} a^{5} + \frac{330894810716138501}{926394383617074089} a^{4} - \frac{170708032847318698}{926394383617074089} a^{3} + \frac{101597223023567945}{926394383617074089} a^{2} + \frac{105729704821201003}{926394383617074089} a - \frac{404105861906535104}{926394383617074089}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $14$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 55116.0718093 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$D_5\wr C_2$ (as 20T48):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 200
The 14 conjugacy class representatives for $D_5\wr C_2$
Character table for $D_5\wr C_2$

Intermediate fields

\(\Q(\sqrt{5}) \), 4.2.83975.2, 10.6.35259003125.1 x5

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 10 siblings: data not computed
Degree 20 siblings: data not computed
Degree 25 sibling: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/11.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{5}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{5}$ ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.10.5.1$x^{10} - 50 x^{6} + 625 x^{2} - 12500$$2$$5$$5$$C_{10}$$[\ ]_{2}^{5}$
5.10.5.1$x^{10} - 50 x^{6} + 625 x^{2} - 12500$$2$$5$$5$$C_{10}$$[\ ]_{2}^{5}$
3359Data not computed