Normalized defining polynomial
\( x^{20} - 9 x^{19} + 25 x^{18} - 9 x^{17} - 97 x^{16} + 221 x^{15} + 302 x^{14} - 1754 x^{13} + 1216 x^{12} + 3185 x^{11} - 7955 x^{10} - 114 x^{9} + 18905 x^{8} + 216 x^{7} - 18394 x^{6} - 5613 x^{5} + 2181 x^{4} - 891 x^{3} - 738 x^{2} + 216 x + 81 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-4075596666226495465452050537109375=-\,3^{8}\cdot 5^{12}\cdot 239^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $47.92$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 239$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{5} a^{14} - \frac{1}{5} a^{13} + \frac{1}{5} a^{12} - \frac{1}{5} a^{11} - \frac{1}{5} a^{10} - \frac{1}{5} a^{9} + \frac{1}{5} a^{8} + \frac{1}{5} a^{7} + \frac{1}{5} a^{6} + \frac{1}{5} a^{5} - \frac{1}{5} a^{4} - \frac{1}{5} a^{3} + \frac{2}{5} a^{2} - \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{5} a^{15} - \frac{2}{5} a^{11} - \frac{2}{5} a^{10} + \frac{2}{5} a^{8} + \frac{2}{5} a^{7} + \frac{2}{5} a^{6} - \frac{2}{5} a^{4} + \frac{1}{5} a^{3} + \frac{1}{5} a^{2} - \frac{2}{5} a - \frac{1}{5}$, $\frac{1}{15} a^{16} + \frac{1}{15} a^{14} - \frac{2}{5} a^{13} - \frac{1}{15} a^{12} + \frac{2}{15} a^{11} - \frac{1}{15} a^{10} + \frac{1}{15} a^{9} - \frac{2}{15} a^{8} - \frac{7}{15} a^{7} + \frac{1}{15} a^{6} - \frac{2}{5} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2} + \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{45} a^{17} + \frac{4}{45} a^{15} + \frac{8}{45} a^{13} - \frac{22}{45} a^{12} + \frac{17}{45} a^{11} + \frac{4}{45} a^{10} + \frac{22}{45} a^{9} + \frac{1}{9} a^{8} - \frac{2}{45} a^{7} + \frac{2}{15} a^{6} + \frac{11}{45} a^{5} + \frac{2}{5} a^{4} - \frac{13}{45} a^{3} + \frac{1}{15} a^{2} - \frac{1}{15} a - \frac{1}{5}$, $\frac{1}{135} a^{18} + \frac{4}{135} a^{16} - \frac{1}{15} a^{15} + \frac{8}{135} a^{14} - \frac{67}{135} a^{13} + \frac{17}{135} a^{12} - \frac{23}{135} a^{11} + \frac{8}{27} a^{10} - \frac{8}{27} a^{9} - \frac{13}{27} a^{8} - \frac{19}{45} a^{7} - \frac{52}{135} a^{6} + \frac{2}{15} a^{5} + \frac{1}{27} a^{4} - \frac{17}{45} a^{3} - \frac{19}{45} a^{2} + \frac{2}{5} a + \frac{2}{5}$, $\frac{1}{241221452532790667392136550825} a^{19} - \frac{24370155862480914519660887}{241221452532790667392136550825} a^{18} + \frac{28359307846267414557825491}{21929222957526424308376050075} a^{17} + \frac{882233153175323746815669433}{241221452532790667392136550825} a^{16} + \frac{17169023619992179835407803224}{241221452532790667392136550825} a^{15} - \frac{10592097148890740200364712371}{241221452532790667392136550825} a^{14} - \frac{10998110885406680068808442598}{48244290506558133478427310165} a^{13} + \frac{9080489000997614527888949407}{80407150844263555797378850275} a^{12} + \frac{40134211531759543151347704848}{241221452532790667392136550825} a^{11} + \frac{395586497175309108252752419}{26802383614754518599126283425} a^{10} + \frac{3675457634393951036659134721}{8934127871584839533042094475} a^{9} - \frac{11186175282536990795506420396}{48244290506558133478427310165} a^{8} - \frac{21242270587911921894383245463}{48244290506558133478427310165} a^{7} - \frac{99764274168003473678145206119}{241221452532790667392136550825} a^{6} + \frac{69329047221634405116312533423}{241221452532790667392136550825} a^{5} - \frac{47104727615027252034588626137}{241221452532790667392136550825} a^{4} - \frac{22621279246224729860668303786}{80407150844263555797378850275} a^{3} - \frac{37756181015737338164695600549}{80407150844263555797378850275} a^{2} - \frac{451083662186782109828429653}{26802383614754518599126283425} a + \frac{1992039608952029272917543321}{8934127871584839533042094475}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3190693194.86 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20480 |
| The 152 conjugacy class representatives for t20n525 are not computed |
| Character table for t20n525 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.12852225.1, 10.10.825898437253125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | R | $20$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{6}$ | $20$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ | $20$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 239 | Data not computed | ||||||