Normalized defining polynomial
\( x^{20} - 5 x^{19} - 9 x^{18} + 127 x^{17} - 397 x^{16} + 330 x^{15} + 1670 x^{14} - 6707 x^{13} + 9906 x^{12} + 2065 x^{11} - 36253 x^{10} + 66812 x^{9} - 41659 x^{8} - 52485 x^{7} + 139583 x^{6} - 123767 x^{5} + 10046 x^{4} + 101145 x^{3} - 118335 x^{2} + 57792 x - 9871 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-4075596666226495465452050537109375=-\,3^{8}\cdot 5^{12}\cdot 239^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $47.92$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 239$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{13} - \frac{1}{3} a^{11} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{13} - \frac{1}{3} a^{12} + \frac{1}{3} a^{11} - \frac{1}{3} a^{9} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{16} + \frac{1}{3} a^{12} - \frac{1}{3} a^{11} - \frac{1}{3} a^{10} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{17} + \frac{1}{3} a^{13} - \frac{1}{3} a^{12} - \frac{1}{3} a^{11} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{45} a^{18} - \frac{7}{45} a^{17} - \frac{2}{15} a^{16} + \frac{2}{15} a^{15} + \frac{2}{45} a^{14} + \frac{1}{9} a^{13} + \frac{2}{5} a^{12} - \frac{1}{15} a^{11} - \frac{2}{15} a^{10} + \frac{2}{9} a^{9} - \frac{4}{15} a^{8} + \frac{7}{15} a^{7} - \frac{19}{45} a^{6} + \frac{2}{45} a^{5} + \frac{2}{5} a^{4} - \frac{1}{3} a^{3} - \frac{7}{45} a^{2} - \frac{16}{45} a + \frac{4}{45}$, $\frac{1}{489558835846577725198358569752494107125} a^{19} - \frac{57685293096840491168934400508880622}{21285166775938161965146024771847569875} a^{18} + \frac{55663190861929408681920009459196593097}{489558835846577725198358569752494107125} a^{17} + \frac{1249378232563655288491859107212783029}{10879085241035060559963523772277646825} a^{16} + \frac{62340934856133216222521202785105005298}{489558835846577725198358569752494107125} a^{15} + \frac{5583590641375341887289500850638823348}{54395426205175302799817618861388234125} a^{14} - \frac{128479462210683455892677223863555183687}{489558835846577725198358569752494107125} a^{13} + \frac{9198237599699839486491654548636711497}{32637255723105181679890571316832940475} a^{12} + \frac{28192988916657049496162284464959414692}{163186278615525908399452856584164702375} a^{11} + \frac{54367089380915646570005065026614524939}{489558835846577725198358569752494107125} a^{10} - \frac{127076198643352455785579978185252317892}{489558835846577725198358569752494107125} a^{9} - \frac{38313518956560858656074269084192857}{163186278615525908399452856584164702375} a^{8} + \frac{63659174373759773026434226575576529337}{489558835846577725198358569752494107125} a^{7} - \frac{44499615435452785702983799438592147099}{163186278615525908399452856584164702375} a^{6} - \frac{20367597521393037725258527359532170004}{97911767169315545039671713950498821425} a^{5} + \frac{73793367876047375021141401535761776376}{163186278615525908399452856584164702375} a^{4} - \frac{154024531877569649547924331084863379357}{489558835846577725198358569752494107125} a^{3} - \frac{14646313255035728616630000054217129091}{163186278615525908399452856584164702375} a^{2} - \frac{209846400163946011480664202854578197037}{489558835846577725198358569752494107125} a - \frac{114556296799521056490517343990519420071}{489558835846577725198358569752494107125}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3020014559.57 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20480 |
| The 152 conjugacy class representatives for t20n525 are not computed |
| Character table for t20n525 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.12852225.1, 10.10.825898437253125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | R | $20$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | $20$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ | $20$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 239 | Data not computed | ||||||