Normalized defining polynomial
\( x^{20} + 18 x^{18} + 89 x^{16} - 10 x^{14} - 685 x^{12} + 38 x^{10} + 1033 x^{8} - 292 x^{6} - 191 x^{4} + 64 x^{2} - 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-38933334597022895851373555971984=-\,2^{4}\cdot 1093^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.98$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 1093$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{6} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} - \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{6} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{8} - \frac{1}{4} a^{7} + \frac{1}{8} a^{6} + \frac{3}{8} a^{4} - \frac{1}{2} a^{3} + \frac{1}{8} a^{2} - \frac{1}{4} a + \frac{3}{8}$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{9} - \frac{1}{8} a^{7} - \frac{1}{4} a^{6} - \frac{1}{8} a^{5} - \frac{1}{2} a^{4} + \frac{1}{8} a^{3} - \frac{3}{8} a + \frac{1}{4}$, $\frac{1}{8} a^{12} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a - \frac{3}{8}$, $\frac{1}{16} a^{13} - \frac{1}{16} a^{11} - \frac{1}{16} a^{10} + \frac{1}{16} a^{9} - \frac{1}{16} a^{8} + \frac{1}{16} a^{7} - \frac{3}{16} a^{6} + \frac{1}{16} a^{5} - \frac{7}{16} a^{4} + \frac{7}{16} a^{3} + \frac{1}{16} a^{2} + \frac{3}{8} a - \frac{5}{16}$, $\frac{1}{80} a^{14} - \frac{3}{80} a^{12} - \frac{1}{16} a^{11} - \frac{1}{80} a^{10} - \frac{1}{16} a^{9} + \frac{3}{80} a^{8} - \frac{3}{16} a^{7} + \frac{11}{80} a^{6} + \frac{1}{16} a^{5} - \frac{3}{16} a^{4} - \frac{7}{16} a^{3} - \frac{9}{20} a^{2} + \frac{3}{16} a + \frac{2}{5}$, $\frac{1}{80} a^{15} + \frac{1}{40} a^{13} - \frac{1}{16} a^{12} + \frac{1}{20} a^{11} - \frac{1}{40} a^{9} - \frac{1}{8} a^{8} + \frac{3}{40} a^{7} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} + \frac{9}{80} a^{3} + \frac{1}{8} a^{2} + \frac{2}{5} a - \frac{7}{16}$, $\frac{1}{640} a^{16} + \frac{1}{640} a^{14} + \frac{27}{640} a^{12} - \frac{1}{16} a^{11} - \frac{13}{320} a^{10} - \frac{1}{16} a^{9} - \frac{1}{320} a^{8} - \frac{3}{16} a^{7} + \frac{17}{320} a^{6} + \frac{1}{16} a^{5} + \frac{89}{640} a^{4} - \frac{7}{16} a^{3} - \frac{287}{640} a^{2} + \frac{3}{16} a + \frac{163}{640}$, $\frac{1}{640} a^{17} + \frac{1}{640} a^{15} - \frac{13}{640} a^{13} - \frac{1}{16} a^{12} + \frac{7}{320} a^{11} - \frac{21}{320} a^{9} - \frac{1}{8} a^{8} - \frac{3}{320} a^{7} - \frac{1}{4} a^{6} + \frac{49}{640} a^{5} + \frac{73}{640} a^{3} + \frac{1}{8} a^{2} - \frac{77}{640} a - \frac{3}{16}$, $\frac{1}{24320} a^{18} - \frac{1}{1280} a^{17} + \frac{1}{3040} a^{16} + \frac{7}{1280} a^{15} - \frac{43}{12160} a^{14} + \frac{29}{1280} a^{13} - \frac{917}{24320} a^{12} - \frac{31}{640} a^{11} + \frac{37}{3040} a^{10} + \frac{53}{640} a^{9} - \frac{15}{1216} a^{8} + \frac{67}{640} a^{7} + \frac{727}{24320} a^{6} - \frac{129}{1280} a^{5} + \frac{29}{80} a^{4} + \frac{559}{1280} a^{3} + \frac{1377}{12160} a^{2} - \frac{67}{1280} a - \frac{2339}{24320}$, $\frac{1}{24320} a^{19} - \frac{11}{24320} a^{17} - \frac{1}{1280} a^{16} + \frac{47}{24320} a^{15} + \frac{7}{1280} a^{14} - \frac{183}{12160} a^{13} - \frac{51}{1280} a^{12} + \frac{319}{12160} a^{11} - \frac{31}{640} a^{10} - \frac{1423}{12160} a^{9} - \frac{27}{640} a^{8} - \frac{4327}{24320} a^{7} + \frac{67}{640} a^{6} + \frac{51}{256} a^{5} + \frac{511}{1280} a^{4} + \frac{1155}{4864} a^{3} - \frac{561}{1280} a^{2} - \frac{2043}{6080} a - \frac{627}{1280}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 951042096.622 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 10240 |
| The 160 conjugacy class representatives for t20n423 are not computed |
| Character table for t20n423 is not computed |
Intermediate fields
| \(\Q(\sqrt{1093}) \), 5.5.1194649.1 x5, 10.10.1559914552888693.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }{,}\,{\href{/LocalNumberField/3.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.4.4.3 | $x^{4} + 2 x^{2} + 4 x + 4$ | $2$ | $2$ | $4$ | $D_{4}$ | $[2, 2]^{2}$ | |
| 1093 | Data not computed | ||||||