Normalized defining polynomial
\( x^{20} - 5 x^{19} + 5 x^{18} + 9 x^{17} - 2 x^{16} - 49 x^{15} - 23 x^{14} + 193 x^{13} - 175 x^{12} - 433 x^{11} + 649 x^{10} + 767 x^{9} - 799 x^{8} - 1291 x^{7} - 236 x^{6} + 743 x^{5} + 873 x^{4} + 476 x^{3} + 136 x^{2} + 19 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-3698056327053752876991753216=-\,2^{10}\cdot 3^{10}\cdot 11^{19}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $23.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{461} a^{18} + \frac{220}{461} a^{17} + \frac{223}{461} a^{16} + \frac{154}{461} a^{15} - \frac{34}{461} a^{14} + \frac{153}{461} a^{13} + \frac{141}{461} a^{12} + \frac{79}{461} a^{11} - \frac{27}{461} a^{10} - \frac{187}{461} a^{9} - \frac{229}{461} a^{8} - \frac{165}{461} a^{7} + \frac{176}{461} a^{6} - \frac{3}{461} a^{5} + \frac{94}{461} a^{4} + \frac{91}{461} a^{3} + \frac{223}{461} a^{2} - \frac{113}{461} a - \frac{41}{461}$, $\frac{1}{704175187181471809} a^{19} - \frac{235456384844629}{704175187181471809} a^{18} - \frac{307760441840716566}{704175187181471809} a^{17} - \frac{91316464590910686}{704175187181471809} a^{16} - \frac{148612712564488493}{704175187181471809} a^{15} + \frac{249842768195551461}{704175187181471809} a^{14} - \frac{105201017631215420}{704175187181471809} a^{13} - \frac{13645716104613220}{704175187181471809} a^{12} + \frac{66420907273706074}{704175187181471809} a^{11} - \frac{49008841164065917}{704175187181471809} a^{10} - \frac{120300756145107197}{704175187181471809} a^{9} + \frac{97018569228489233}{704175187181471809} a^{8} - \frac{336085139009250902}{704175187181471809} a^{7} + \frac{180477206743562492}{704175187181471809} a^{6} + \frac{283467335947571593}{704175187181471809} a^{5} + \frac{288512401876028000}{704175187181471809} a^{4} + \frac{301907901382739166}{704175187181471809} a^{3} + \frac{215159606300604929}{704175187181471809} a^{2} - \frac{244039210220816825}{704175187181471809} a + \frac{227766179079251282}{704175187181471809}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2048882.65605 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 10240 |
| The 136 conjugacy class representatives for t20n409 are not computed |
| Character table for t20n409 is not computed |
Intermediate fields
| \(\Q(\sqrt{33}) \), \(\Q(\zeta_{11})^+\), \(\Q(\zeta_{33})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | $20$ | R | $20$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}$ | $20$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.2 | $x^{10} - 5 x^{8} + 10 x^{6} - 2 x^{4} - 11 x^{2} + 39$ | $2$ | $5$ | $10$ | $C_2^4 : C_5$ | $[2, 2, 2, 2]^{5}$ |
| 2.10.0.1 | $x^{10} - x^{3} + 1$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| 3 | Data not computed | ||||||
| 11 | Data not computed | ||||||