Properties

Label 20.10.3556945669...0000.2
Degree $20$
Signature $[10, 5]$
Discriminant $-\,2^{16}\cdot 5^{10}\cdot 13^{4}\cdot 29^{4}\cdot 31^{7}$
Root discriminant $42.42$
Ramified primes $2, 5, 13, 29, 31$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T1036

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-80, -120, 916, -900, -3632, 7468, 8240, -10942, -4192, 11368, -3851, -12064, 2031, 5344, -481, -1024, 111, 82, -17, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 2*x^19 - 17*x^18 + 82*x^17 + 111*x^16 - 1024*x^15 - 481*x^14 + 5344*x^13 + 2031*x^12 - 12064*x^11 - 3851*x^10 + 11368*x^9 - 4192*x^8 - 10942*x^7 + 8240*x^6 + 7468*x^5 - 3632*x^4 - 900*x^3 + 916*x^2 - 120*x - 80)
 
gp: K = bnfinit(x^20 - 2*x^19 - 17*x^18 + 82*x^17 + 111*x^16 - 1024*x^15 - 481*x^14 + 5344*x^13 + 2031*x^12 - 12064*x^11 - 3851*x^10 + 11368*x^9 - 4192*x^8 - 10942*x^7 + 8240*x^6 + 7468*x^5 - 3632*x^4 - 900*x^3 + 916*x^2 - 120*x - 80, 1)
 

Normalized defining polynomial

\( x^{20} - 2 x^{19} - 17 x^{18} + 82 x^{17} + 111 x^{16} - 1024 x^{15} - 481 x^{14} + 5344 x^{13} + 2031 x^{12} - 12064 x^{11} - 3851 x^{10} + 11368 x^{9} - 4192 x^{8} - 10942 x^{7} + 8240 x^{6} + 7468 x^{5} - 3632 x^{4} - 900 x^{3} + 916 x^{2} - 120 x - 80 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[10, 5]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-355694566977399050976640000000000=-\,2^{16}\cdot 5^{10}\cdot 13^{4}\cdot 29^{4}\cdot 31^{7}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $42.42$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 13, 29, 31$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{16} - \frac{1}{4} a^{15} - \frac{1}{4} a^{12} + \frac{1}{4} a^{11} - \frac{1}{2} a^{9} + \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{17} - \frac{1}{4} a^{15} - \frac{1}{4} a^{13} + \frac{1}{4} a^{11} - \frac{1}{2} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{18} - \frac{1}{4} a^{15} - \frac{1}{4} a^{14} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{2} a^{9} + \frac{1}{4} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{2628299075061952490453280418386600760} a^{19} - \frac{11168652720774128299889040021041383}{131414953753097624522664020919330038} a^{18} + \frac{194483853236861845939578568037948483}{2628299075061952490453280418386600760} a^{17} + \frac{57486165945395908495294214345462069}{1314149537530976245226640209193300380} a^{16} - \frac{624707005853268645070976435155101163}{2628299075061952490453280418386600760} a^{15} + \frac{18386033408773145963964872610307173}{262829907506195249045328041838660076} a^{14} - \frac{87306340964604151321458414876257761}{2628299075061952490453280418386600760} a^{13} + \frac{161415968491973148692413264508500123}{657074768765488122613320104596650190} a^{12} + \frac{166507531311728530813397453775946913}{525659815012390498090656083677320152} a^{11} + \frac{504589903968642462619020109492585913}{1314149537530976245226640209193300380} a^{10} + \frac{152585601150305115338177535908868081}{2628299075061952490453280418386600760} a^{9} - \frac{60864427965345673681358628477746739}{131414953753097624522664020919330038} a^{8} + \frac{266814860320602279704665817970886709}{1314149537530976245226640209193300380} a^{7} + \frac{200983233661894091730967150039516617}{1314149537530976245226640209193300380} a^{6} + \frac{149748519241979377493753676156286321}{328537384382744061306660052298325095} a^{5} + \frac{21050490918802395147893777240921683}{328537384382744061306660052298325095} a^{4} + \frac{12131598962030974506502211793843709}{657074768765488122613320104596650190} a^{3} + \frac{300826424483356019461439596444603463}{657074768765488122613320104596650190} a^{2} - \frac{22140117918179338693827377468639283}{131414953753097624522664020919330038} a - \frac{30517529385578726512260887625658211}{65707476876548812261332010459665019}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $14$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 3067392971.02 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T1036:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 14745600
The 396 conjugacy class representatives for t20n1036 are not computed
Character table for t20n1036 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 10.10.109268775200000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R $20$ R ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ R ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ $20$ R R ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ $20$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.2.0.1$x^{2} - x + 1$$1$$2$$0$$C_2$$[\ ]^{2}$
2.2.0.1$x^{2} - x + 1$$1$$2$$0$$C_2$$[\ ]^{2}$
2.8.8.12$x^{8} + 2 x^{5} + 2 x^{4} + 4$$4$$2$$8$$A_4\wr C_2$$[4/3, 4/3, 4/3, 4/3]_{3}^{6}$
2.8.8.12$x^{8} + 2 x^{5} + 2 x^{4} + 4$$4$$2$$8$$A_4\wr C_2$$[4/3, 4/3, 4/3, 4/3]_{3}^{6}$
5Data not computed
$13$13.8.4.1$x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
13.12.0.1$x^{12} + x^{2} - x + 2$$1$$12$$0$$C_{12}$$[\ ]^{12}$
$29$29.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
29.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
29.5.0.1$x^{5} - x + 11$$1$$5$$0$$C_5$$[\ ]^{5}$
29.5.0.1$x^{5} - x + 11$$1$$5$$0$$C_5$$[\ ]^{5}$
29.6.4.1$x^{6} + 232 x^{3} + 22707$$3$$2$$4$$S_3$$[\ ]_{3}^{2}$
$31$$\Q_{31}$$x + 7$$1$$1$$0$Trivial$[\ ]$
$\Q_{31}$$x + 7$$1$$1$$0$Trivial$[\ ]$
31.4.2.2$x^{4} - 31 x^{2} + 11532$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
31.6.5.4$x^{6} + 217$$6$$1$$5$$C_6$$[\ ]_{6}$
31.8.0.1$x^{8} - x + 22$$1$$8$$0$$C_8$$[\ ]^{8}$