Normalized defining polynomial
\( x^{20} - 2 x^{19} - 17 x^{18} + 82 x^{17} + 111 x^{16} - 1024 x^{15} - 481 x^{14} + 5344 x^{13} + 2031 x^{12} - 12064 x^{11} - 3851 x^{10} + 11368 x^{9} - 4192 x^{8} - 10942 x^{7} + 8240 x^{6} + 7468 x^{5} - 3632 x^{4} - 900 x^{3} + 916 x^{2} - 120 x - 80 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-355694566977399050976640000000000=-\,2^{16}\cdot 5^{10}\cdot 13^{4}\cdot 29^{4}\cdot 31^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.42$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 13, 29, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{16} - \frac{1}{4} a^{15} - \frac{1}{4} a^{12} + \frac{1}{4} a^{11} - \frac{1}{2} a^{9} + \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{17} - \frac{1}{4} a^{15} - \frac{1}{4} a^{13} + \frac{1}{4} a^{11} - \frac{1}{2} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{18} - \frac{1}{4} a^{15} - \frac{1}{4} a^{14} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{2} a^{9} + \frac{1}{4} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{2628299075061952490453280418386600760} a^{19} - \frac{11168652720774128299889040021041383}{131414953753097624522664020919330038} a^{18} + \frac{194483853236861845939578568037948483}{2628299075061952490453280418386600760} a^{17} + \frac{57486165945395908495294214345462069}{1314149537530976245226640209193300380} a^{16} - \frac{624707005853268645070976435155101163}{2628299075061952490453280418386600760} a^{15} + \frac{18386033408773145963964872610307173}{262829907506195249045328041838660076} a^{14} - \frac{87306340964604151321458414876257761}{2628299075061952490453280418386600760} a^{13} + \frac{161415968491973148692413264508500123}{657074768765488122613320104596650190} a^{12} + \frac{166507531311728530813397453775946913}{525659815012390498090656083677320152} a^{11} + \frac{504589903968642462619020109492585913}{1314149537530976245226640209193300380} a^{10} + \frac{152585601150305115338177535908868081}{2628299075061952490453280418386600760} a^{9} - \frac{60864427965345673681358628477746739}{131414953753097624522664020919330038} a^{8} + \frac{266814860320602279704665817970886709}{1314149537530976245226640209193300380} a^{7} + \frac{200983233661894091730967150039516617}{1314149537530976245226640209193300380} a^{6} + \frac{149748519241979377493753676156286321}{328537384382744061306660052298325095} a^{5} + \frac{21050490918802395147893777240921683}{328537384382744061306660052298325095} a^{4} + \frac{12131598962030974506502211793843709}{657074768765488122613320104596650190} a^{3} + \frac{300826424483356019461439596444603463}{657074768765488122613320104596650190} a^{2} - \frac{22140117918179338693827377468639283}{131414953753097624522664020919330038} a - \frac{30517529385578726512260887625658211}{65707476876548812261332010459665019}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3067392971.02 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 14745600 |
| The 396 conjugacy class representatives for t20n1036 are not computed |
| Character table for t20n1036 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.10.109268775200000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | R | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | $20$ | R | R | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | $20$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.8.8.12 | $x^{8} + 2 x^{5} + 2 x^{4} + 4$ | $4$ | $2$ | $8$ | $A_4\wr C_2$ | $[4/3, 4/3, 4/3, 4/3]_{3}^{6}$ | |
| 2.8.8.12 | $x^{8} + 2 x^{5} + 2 x^{4} + 4$ | $4$ | $2$ | $8$ | $A_4\wr C_2$ | $[4/3, 4/3, 4/3, 4/3]_{3}^{6}$ | |
| 5 | Data not computed | ||||||
| $13$ | 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 13.12.0.1 | $x^{12} + x^{2} - x + 2$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| $29$ | 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.5.0.1 | $x^{5} - x + 11$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 29.5.0.1 | $x^{5} - x + 11$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 29.6.4.1 | $x^{6} + 232 x^{3} + 22707$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $31$ | $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 31.4.2.2 | $x^{4} - 31 x^{2} + 11532$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 31.6.5.4 | $x^{6} + 217$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 31.8.0.1 | $x^{8} - x + 22$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |