Properties

Label 20.10.3556945669...0000.1
Degree $20$
Signature $[10, 5]$
Discriminant $-\,2^{16}\cdot 5^{10}\cdot 13^{4}\cdot 29^{4}\cdot 31^{7}$
Root discriminant $42.42$
Ramified primes $2, 5, 13, 29, 31$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T658

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-64, 672, -2335, 1851, 5897, -10258, -4037, 13537, 1523, -7530, -3388, 1172, 3268, 1664, 297, -99, -145, -48, -13, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - x^19 - 13*x^18 - 48*x^17 - 145*x^16 - 99*x^15 + 297*x^14 + 1664*x^13 + 3268*x^12 + 1172*x^11 - 3388*x^10 - 7530*x^9 + 1523*x^8 + 13537*x^7 - 4037*x^6 - 10258*x^5 + 5897*x^4 + 1851*x^3 - 2335*x^2 + 672*x - 64)
 
gp: K = bnfinit(x^20 - x^19 - 13*x^18 - 48*x^17 - 145*x^16 - 99*x^15 + 297*x^14 + 1664*x^13 + 3268*x^12 + 1172*x^11 - 3388*x^10 - 7530*x^9 + 1523*x^8 + 13537*x^7 - 4037*x^6 - 10258*x^5 + 5897*x^4 + 1851*x^3 - 2335*x^2 + 672*x - 64, 1)
 

Normalized defining polynomial

\( x^{20} - x^{19} - 13 x^{18} - 48 x^{17} - 145 x^{16} - 99 x^{15} + 297 x^{14} + 1664 x^{13} + 3268 x^{12} + 1172 x^{11} - 3388 x^{10} - 7530 x^{9} + 1523 x^{8} + 13537 x^{7} - 4037 x^{6} - 10258 x^{5} + 5897 x^{4} + 1851 x^{3} - 2335 x^{2} + 672 x - 64 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[10, 5]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-355694566977399050976640000000000=-\,2^{16}\cdot 5^{10}\cdot 13^{4}\cdot 29^{4}\cdot 31^{7}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $42.42$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 13, 29, 31$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{2} a^{13} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{5}$, $\frac{1}{4} a^{18} - \frac{1}{4} a^{16} - \frac{1}{4} a^{15} - \frac{1}{4} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{4} a^{6} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} + \frac{1}{4} a$, $\frac{1}{31705053079628549312987705799632} a^{19} - \frac{3725492244673892716157951322717}{31705053079628549312987705799632} a^{18} - \frac{2003245550263628873107253691069}{31705053079628549312987705799632} a^{17} + \frac{273044633601788925126293835293}{7926263269907137328246926449908} a^{16} - \frac{2077698275899757899567410419029}{31705053079628549312987705799632} a^{15} - \frac{24629868623972072753706675067}{31705053079628549312987705799632} a^{14} - \frac{441016190401484826891186895187}{31705053079628549312987705799632} a^{13} + \frac{542293917896978583713084401800}{1981565817476784332061731612477} a^{12} + \frac{3174845924331564237453447175035}{7926263269907137328246926449908} a^{11} - \frac{1284824992316731987733801812213}{7926263269907137328246926449908} a^{10} + \frac{1378087296710869857963120397831}{7926263269907137328246926449908} a^{9} - \frac{3492246837067003020802685225185}{15852526539814274656493852899816} a^{8} - \frac{4777171210062449670511038122125}{31705053079628549312987705799632} a^{7} - \frac{5299657385018028507802481158547}{31705053079628549312987705799632} a^{6} + \frac{13344613242160952113049154689035}{31705053079628549312987705799632} a^{5} + \frac{36480851842694148869761354833}{15852526539814274656493852899816} a^{4} + \frac{14152207924978323978852148172109}{31705053079628549312987705799632} a^{3} + \frac{3547457079836187793040517094435}{31705053079628549312987705799632} a^{2} - \frac{9500681995568008966083254169075}{31705053079628549312987705799632} a + \frac{578234627287487182733060804181}{3963131634953568664123463224954}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $14$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 2329454968.57 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T658:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 57600
The 76 conjugacy class representatives for t20n658 are not computed
Character table for t20n658 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 4.2.775.1, 10.10.109268775200000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 24 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R $20$ R ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ R ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}$ $20$ R R ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ $20$ ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.2.0.1$x^{2} - x + 1$$1$$2$$0$$C_2$$[\ ]^{2}$
2.2.0.1$x^{2} - x + 1$$1$$2$$0$$C_2$$[\ ]^{2}$
2.8.8.12$x^{8} + 2 x^{5} + 2 x^{4} + 4$$4$$2$$8$$A_4\wr C_2$$[4/3, 4/3, 4/3, 4/3]_{3}^{6}$
2.8.8.12$x^{8} + 2 x^{5} + 2 x^{4} + 4$$4$$2$$8$$A_4\wr C_2$$[4/3, 4/3, 4/3, 4/3]_{3}^{6}$
$5$5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$13$13.8.4.1$x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
13.12.0.1$x^{12} + x^{2} - x + 2$$1$$12$$0$$C_{12}$$[\ ]^{12}$
$29$29.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
29.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
29.5.0.1$x^{5} - x + 11$$1$$5$$0$$C_5$$[\ ]^{5}$
29.5.0.1$x^{5} - x + 11$$1$$5$$0$$C_5$$[\ ]^{5}$
29.6.4.1$x^{6} + 232 x^{3} + 22707$$3$$2$$4$$S_3$$[\ ]_{3}^{2}$
$31$31.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
31.4.0.1$x^{4} - 2 x + 17$$1$$4$$0$$C_4$$[\ ]^{4}$
31.4.2.1$x^{4} + 713 x^{2} + 138384$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
31.4.0.1$x^{4} - 2 x + 17$$1$$4$$0$$C_4$$[\ ]^{4}$
31.6.5.3$x^{6} - 74431$$6$$1$$5$$C_6$$[\ ]_{6}$