Normalized defining polynomial
\( x^{20} - x^{19} - 3 x^{18} + 7 x^{17} - 6 x^{16} + 11 x^{15} - 31 x^{14} - 68 x^{13} + 269 x^{12} - 140 x^{11} - 496 x^{10} + 705 x^{9} + 157 x^{8} - 799 x^{7} + 490 x^{6} + 374 x^{5} - 387 x^{4} + 57 x^{3} + 127 x^{2} - 25 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-330675770864580911767512064=-\,2^{10}\cdot 11^{18}\cdot 241^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.18$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 241$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{3} a^{16} - \frac{1}{3} a^{13} + \frac{1}{3} a^{12} + \frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{9} a^{17} - \frac{1}{9} a^{16} + \frac{2}{9} a^{14} - \frac{4}{9} a^{13} - \frac{1}{9} a^{12} - \frac{2}{9} a^{11} + \frac{4}{9} a^{9} - \frac{1}{9} a^{8} + \frac{2}{9} a^{7} + \frac{1}{9} a^{6} + \frac{1}{3} a^{5} + \frac{1}{9} a^{4} + \frac{2}{9} a^{3} + \frac{2}{9} a^{2} + \frac{4}{9} a - \frac{4}{9}$, $\frac{1}{27} a^{18} + \frac{1}{27} a^{17} - \frac{2}{27} a^{16} + \frac{2}{27} a^{15} + \frac{1}{3} a^{13} - \frac{13}{27} a^{12} + \frac{5}{27} a^{11} - \frac{5}{27} a^{10} + \frac{7}{27} a^{9} + \frac{1}{3} a^{8} - \frac{13}{27} a^{7} - \frac{13}{27} a^{6} - \frac{2}{27} a^{5} + \frac{13}{27} a^{4} - \frac{1}{9} a^{3} - \frac{1}{27} a^{2} + \frac{4}{27} a + \frac{1}{27}$, $\frac{1}{8235224116466761971} a^{19} - \frac{10598868081224827}{2745074705488920657} a^{18} - \frac{41420279989904495}{2745074705488920657} a^{17} - \frac{667933745043058946}{8235224116466761971} a^{16} - \frac{3111139811256365465}{8235224116466761971} a^{15} + \frac{18570200560703132}{305008300609880073} a^{14} - \frac{200474229003122245}{8235224116466761971} a^{13} + \frac{466925021436086788}{2745074705488920657} a^{12} + \frac{1087256225624270591}{8235224116466761971} a^{11} + \frac{347914651838942263}{915024901829640219} a^{10} + \frac{432033314563671281}{8235224116466761971} a^{9} - \frac{1379728244712481267}{8235224116466761971} a^{8} - \frac{65701771113305414}{2745074705488920657} a^{7} - \frac{1052498193864754828}{8235224116466761971} a^{6} - \frac{432416225461379417}{2745074705488920657} a^{5} - \frac{3855776275141810579}{8235224116466761971} a^{4} - \frac{1037355696644876170}{8235224116466761971} a^{3} + \frac{3439502508759562106}{8235224116466761971} a^{2} - \frac{875523974335691246}{2745074705488920657} a + \frac{2138294149833273332}{8235224116466761971}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 617689.692878 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 163840 |
| The 649 conjugacy class representatives for t20n846 are not computed |
| Character table for t20n846 is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.6.51660490321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }{,}\,{\href{/LocalNumberField/3.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | $20$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.13 | $x^{10} - 15 x^{8} + 26 x^{6} - 22 x^{4} + 37 x^{2} - 59$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2, 2]^{5}$ |
| 2.10.0.1 | $x^{10} - x^{3} + 1$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| 11 | Data not computed | ||||||
| 241 | Data not computed | ||||||