Normalized defining polynomial
\( x^{20} - 22 x^{18} + 178 x^{16} - 652 x^{14} + 759 x^{12} + 2384 x^{10} - 10862 x^{8} + 18922 x^{6} - 16999 x^{4} + 7540 x^{2} - 1296 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-3296782699455365659704583782400=-\,2^{28}\cdot 5^{2}\cdot 53^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.57$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} + \frac{1}{4} a^{7} + \frac{1}{4} a^{6} + \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} + \frac{1}{4} a^{6} + \frac{1}{4} a^{5} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} + \frac{1}{4} a^{7} + \frac{1}{4} a^{6} - \frac{1}{4} a^{3}$, $\frac{1}{8} a^{15} - \frac{1}{8} a^{13} - \frac{1}{4} a^{10} + \frac{1}{8} a^{9} - \frac{1}{2} a^{7} + \frac{1}{4} a^{6} + \frac{3}{8} a^{5} - \frac{3}{8} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{16} - \frac{1}{8} a^{14} - \frac{1}{4} a^{11} + \frac{1}{8} a^{10} - \frac{1}{2} a^{8} + \frac{1}{4} a^{7} + \frac{3}{8} a^{6} - \frac{3}{8} a^{4} - \frac{1}{4} a^{3}$, $\frac{1}{8} a^{17} - \frac{1}{8} a^{13} - \frac{1}{8} a^{11} + \frac{1}{8} a^{9} + \frac{1}{8} a^{7} - \frac{1}{2} a^{5} + \frac{3}{8} a^{3} - \frac{1}{2} a$, $\frac{1}{7450461968} a^{18} - \frac{1}{16} a^{17} + \frac{61677785}{3725230984} a^{16} - \frac{1}{16} a^{15} + \frac{751225077}{7450461968} a^{14} - \frac{436075373}{7450461968} a^{12} + \frac{1}{16} a^{11} + \frac{1478540435}{7450461968} a^{10} - \frac{1}{4} a^{9} + \frac{598748645}{7450461968} a^{8} - \frac{5}{16} a^{7} - \frac{1304884999}{3725230984} a^{6} + \frac{3}{16} a^{5} - \frac{409295415}{7450461968} a^{4} - \frac{1}{2} a^{3} + \frac{494733351}{1862615492} a^{2} - \frac{106140930}{465653873}$, $\frac{1}{67054157712} a^{19} + \frac{2451624935}{67054157712} a^{17} - \frac{1}{16} a^{16} + \frac{71392801}{16763539428} a^{15} - \frac{1}{16} a^{14} - \frac{5092614103}{67054157712} a^{13} - \frac{2625108811}{11175692952} a^{11} - \frac{3}{16} a^{10} + \frac{14568364835}{67054157712} a^{9} - \frac{1}{4} a^{8} + \frac{12756807811}{67054157712} a^{7} - \frac{1}{16} a^{6} - \frac{109368661}{8381769714} a^{5} + \frac{3}{16} a^{4} + \frac{14493429019}{33527078856} a^{3} + \frac{1}{4} a^{2} - \frac{571794803}{4190884857} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 256774179.725 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 655360 |
| The 331 conjugacy class representatives for t20n946 are not computed |
| Character table for t20n946 is not computed |
Intermediate fields
| 5.5.2382032.1, 10.6.28370382245120.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | R | $20$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | $16{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | $20$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.4.3 | $x^{4} + 2 x^{2} + 4 x + 4$ | $2$ | $2$ | $4$ | $D_{4}$ | $[2, 2]^{2}$ |
| 2.8.16.7 | $x^{8} + 6 x^{6} + 6 x^{4} + 12 x^{2} + 8 x + 12$ | $4$ | $2$ | $16$ | $C_2^2:C_4$ | $[2, 3]^{4}$ | |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.8.0.1 | $x^{8} + x^{2} - 2 x + 3$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 5.8.0.1 | $x^{8} + x^{2} - 2 x + 3$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 53 | Data not computed | ||||||