Normalized defining polynomial
\( x^{20} - 10 x^{19} + 33 x^{18} - 12 x^{17} - 233 x^{16} + 844 x^{15} - 1344 x^{14} + 146 x^{13} + 4020 x^{12} - 9274 x^{11} + 9966 x^{10} - 1656 x^{9} - 11045 x^{8} + 17316 x^{7} - 12163 x^{6} + 2060 x^{5} + 3613 x^{4} - 3318 x^{3} + 1030 x^{2} + 26 x - 109 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-310114487798903480985555304448=-\,2^{20}\cdot 11^{16}\cdot 23^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.82$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{7742841937513} a^{18} - \frac{9}{7742841937513} a^{17} + \frac{2201796344625}{7742841937513} a^{16} - \frac{2128686881770}{7742841937513} a^{15} + \frac{499455535632}{7742841937513} a^{14} + \frac{2784463930785}{7742841937513} a^{13} + \frac{2574508776115}{7742841937513} a^{12} - \frac{1386340062031}{7742841937513} a^{11} + \frac{1037538302021}{7742841937513} a^{10} - \frac{228305875530}{7742841937513} a^{9} - \frac{3556447989784}{7742841937513} a^{8} - \frac{370747651475}{7742841937513} a^{7} + \frac{1754863723246}{7742841937513} a^{6} + \frac{820568383765}{7742841937513} a^{5} - \frac{3585797590657}{7742841937513} a^{4} - \frac{147910497490}{7742841937513} a^{3} - \frac{3632784339401}{7742841937513} a^{2} + \frac{3363825891957}{7742841937513} a + \frac{2198014326632}{7742841937513}$, $\frac{1}{12597603832333651} a^{19} + \frac{804}{12597603832333651} a^{18} + \frac{249972738337724}{12597603832333651} a^{17} - \frac{333606949580207}{12597603832333651} a^{16} + \frac{5176492028918218}{12597603832333651} a^{15} - \frac{2610866541230469}{12597603832333651} a^{14} + \frac{5355737617572007}{12597603832333651} a^{13} - \frac{5604695590968458}{12597603832333651} a^{12} + \frac{4162304111192197}{12597603832333651} a^{11} + \frac{5845166225300941}{12597603832333651} a^{10} + \frac{128287394642359}{12597603832333651} a^{9} + \frac{4587822348291691}{12597603832333651} a^{8} - \frac{3822656058494344}{12597603832333651} a^{7} + \frac{126727329880579}{12597603832333651} a^{6} + \frac{5286012935105549}{12597603832333651} a^{5} - \frac{3472885971202567}{12597603832333651} a^{4} - \frac{3584934364867082}{12597603832333651} a^{3} + \frac{5319265347222828}{12597603832333651} a^{2} - \frac{2868829098271739}{12597603832333651} a - \frac{5181572096209884}{12597603832333651}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 25203903.6334 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 81920 |
| The 332 conjugacy class representatives for t20n749 are not computed |
| Character table for t20n749 is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.10.116117348402176.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}$ | R | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $11$ | 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| $23$ | $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 23.4.3.1 | $x^{4} + 46$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |