Normalized defining polynomial
\( x^{20} - 5 x^{19} + 15 x^{18} - 47 x^{17} + 96 x^{16} - 142 x^{15} + 234 x^{14} - 146 x^{13} - 158 x^{12} + 160 x^{11} - 804 x^{10} + 1391 x^{9} - 136 x^{8} + 1213 x^{7} - 2923 x^{6} + 219 x^{5} + 470 x^{4} + 1345 x^{3} - 755 x^{2} - 160 x + 89 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-3009103398689521267119563776=-\,2^{10}\cdot 11^{18}\cdot 727^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $23.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 727$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{312932196647448658215436093} a^{19} - \frac{43187315720172938380096470}{312932196647448658215436093} a^{18} - \frac{8056083678686222584568161}{312932196647448658215436093} a^{17} - \frac{120981818557083070664317627}{312932196647448658215436093} a^{16} - \frac{52516789291446045185708670}{312932196647448658215436093} a^{15} + \frac{20838531287127730852725312}{312932196647448658215436093} a^{14} - \frac{84079790083472500742693346}{312932196647448658215436093} a^{13} + \frac{15103148301184828182967447}{312932196647448658215436093} a^{12} + \frac{109291772223452907824364379}{312932196647448658215436093} a^{11} - \frac{61805145200801759910080664}{312932196647448658215436093} a^{10} + \frac{141926529340166907057425067}{312932196647448658215436093} a^{9} - \frac{96923645685585011981570976}{312932196647448658215436093} a^{8} - \frac{138159589581577899470232150}{312932196647448658215436093} a^{7} + \frac{51736882866417507940346733}{312932196647448658215436093} a^{6} - \frac{100419997748485416933421966}{312932196647448658215436093} a^{5} + \frac{62153883521630581084292255}{312932196647448658215436093} a^{4} + \frac{148744891593318858697359438}{312932196647448658215436093} a^{3} + \frac{8190639877266684164739598}{312932196647448658215436093} a^{2} - \frac{4411992926098150831968344}{312932196647448658215436093} a + \frac{101396939054305350747728786}{312932196647448658215436093}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1872103.00216 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 163840 |
| The 649 conjugacy class representatives for t20n846 are not computed |
| Character table for t20n846 is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.8.155838906487.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.10.10.10 | $x^{10} - 11 x^{8} + 10 x^{6} - 62 x^{4} + 21 x^{2} - 55$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2, 2]^{5}$ | |
| 11 | Data not computed | ||||||
| 727 | Data not computed | ||||||