Normalized defining polynomial
\( x^{20} - 8 x^{19} + 30 x^{18} - 67 x^{17} + 8 x^{16} + 546 x^{15} - 1921 x^{14} + 3464 x^{13} - 3077 x^{12} - 3559 x^{11} + 20428 x^{10} - 40810 x^{9} + 48560 x^{8} - 42349 x^{7} + 37707 x^{6} - 33332 x^{5} + 15773 x^{4} + 2101 x^{3} - 3449 x^{2} - 112 x + 43 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-295542555810828925413205326764411=-\,11^{16}\cdot 1451^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.03$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 1451$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{11} a^{15} + \frac{5}{11} a^{14} + \frac{1}{11} a^{13} + \frac{2}{11} a^{12} + \frac{3}{11} a^{11} - \frac{5}{11} a^{9} - \frac{4}{11} a^{8} + \frac{3}{11} a^{6} + \frac{2}{11} a^{5} - \frac{4}{11} a^{4} - \frac{5}{11} a^{3} - \frac{1}{11} a^{2} + \frac{2}{11} a - \frac{1}{11}$, $\frac{1}{11} a^{16} - \frac{2}{11} a^{14} - \frac{3}{11} a^{13} + \frac{4}{11} a^{12} - \frac{4}{11} a^{11} - \frac{5}{11} a^{10} - \frac{1}{11} a^{9} - \frac{2}{11} a^{8} + \frac{3}{11} a^{7} - \frac{2}{11} a^{6} - \frac{3}{11} a^{5} + \frac{4}{11} a^{4} + \frac{2}{11} a^{3} - \frac{4}{11} a^{2} + \frac{5}{11}$, $\frac{1}{11} a^{17} - \frac{4}{11} a^{14} - \frac{5}{11} a^{13} + \frac{1}{11} a^{11} - \frac{1}{11} a^{10} - \frac{1}{11} a^{9} - \frac{5}{11} a^{8} - \frac{2}{11} a^{7} + \frac{3}{11} a^{6} - \frac{3}{11} a^{5} + \frac{5}{11} a^{4} - \frac{3}{11} a^{3} - \frac{2}{11} a^{2} - \frac{2}{11} a - \frac{2}{11}$, $\frac{1}{11} a^{18} + \frac{4}{11} a^{14} + \frac{4}{11} a^{13} - \frac{2}{11} a^{12} - \frac{1}{11} a^{10} - \frac{3}{11} a^{9} + \frac{4}{11} a^{8} + \frac{3}{11} a^{7} - \frac{2}{11} a^{6} + \frac{2}{11} a^{5} + \frac{3}{11} a^{4} + \frac{5}{11} a^{2} - \frac{5}{11} a - \frac{4}{11}$, $\frac{1}{103394365798326220045338134139289} a^{19} - \frac{4354461631178952142477474545931}{103394365798326220045338134139289} a^{18} + \frac{272281957433742727560719782715}{103394365798326220045338134139289} a^{17} + \frac{4476250353613482696861355787912}{103394365798326220045338134139289} a^{16} - \frac{832285855241272461117267220264}{103394365798326220045338134139289} a^{15} + \frac{41500678151681629502340696086885}{103394365798326220045338134139289} a^{14} - \frac{16868682688205206242784702541348}{103394365798326220045338134139289} a^{13} - \frac{60860117784412847863560569889}{408673382602079921127818712013} a^{12} - \frac{21882242715500873150350155383561}{103394365798326220045338134139289} a^{11} + \frac{32224346097706018012803780261960}{103394365798326220045338134139289} a^{10} + \frac{32496162814872674888205362085732}{103394365798326220045338134139289} a^{9} - \frac{2492284092025276514964792163496}{9399487799847838185939830376299} a^{8} + \frac{3285473831791496147976488749785}{9399487799847838185939830376299} a^{7} + \frac{41348957452489925643648898059234}{103394365798326220045338134139289} a^{6} - \frac{13906236399765211968922224963926}{103394365798326220045338134139289} a^{5} + \frac{28440044332053372491544903554792}{103394365798326220045338134139289} a^{4} + \frac{41486455412892495958513355021135}{103394365798326220045338134139289} a^{3} + \frac{19772840069670659915551174307051}{103394365798326220045338134139289} a^{2} - \frac{33546607007344074592186548047040}{103394365798326220045338134139289} a - \frac{1522094053115394623109636287922}{9399487799847838185939830376299}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 810275651.403 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5120 |
| The 44 conjugacy class representatives for t20n310 |
| Character table for t20n310 is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.10.451311402416281.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }{,}\,{\href{/LocalNumberField/2.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| 1451 | Data not computed | ||||||