Normalized defining polynomial
\( x^{20} - 6 x^{19} + 11 x^{18} - 4 x^{17} - 78 x^{16} + 483 x^{15} - 1045 x^{14} + 401 x^{13} + 2572 x^{12} - 8098 x^{11} + 9973 x^{10} + 8760 x^{9} - 32045 x^{8} + 8528 x^{7} + 28915 x^{6} - 10020 x^{5} - 16808 x^{4} + 4960 x^{3} + 7039 x^{2} - 4245 x + 683 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-295542555810828925413205326764411=-\,11^{16}\cdot 1451^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.03$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 1451$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{67} a^{18} - \frac{21}{67} a^{17} + \frac{32}{67} a^{16} - \frac{5}{67} a^{15} - \frac{31}{67} a^{14} + \frac{6}{67} a^{13} + \frac{6}{67} a^{12} + \frac{21}{67} a^{11} + \frac{24}{67} a^{10} - \frac{26}{67} a^{9} + \frac{24}{67} a^{8} + \frac{31}{67} a^{7} + \frac{31}{67} a^{6} + \frac{21}{67} a^{5} - \frac{11}{67} a^{4} - \frac{16}{67} a^{3} - \frac{1}{67} a^{2} + \frac{31}{67} a - \frac{33}{67}$, $\frac{1}{1864078287613821320291717755592382607} a^{19} + \frac{8495439790271022185517600286234709}{1864078287613821320291717755592382607} a^{18} + \frac{392198129101327994273579831638691752}{1864078287613821320291717755592382607} a^{17} + \frac{503472734380847890922110391890946687}{1864078287613821320291717755592382607} a^{16} + \frac{591517214946795926821129714671104959}{1864078287613821320291717755592382607} a^{15} - \frac{373288719597209737343041969492884270}{1864078287613821320291717755592382607} a^{14} + \frac{284254835764230533530020825332509846}{1864078287613821320291717755592382607} a^{13} + \frac{921507724298539318948958087605274679}{1864078287613821320291717755592382607} a^{12} - \frac{370267956705309217392202654752902385}{1864078287613821320291717755592382607} a^{11} - \frac{189650244782322518255333142061425473}{1864078287613821320291717755592382607} a^{10} - \frac{145176626413730987413157803466571740}{1864078287613821320291717755592382607} a^{9} - \frac{589471193256720796504614415125795677}{1864078287613821320291717755592382607} a^{8} + \frac{532853118562249902070370152258860490}{1864078287613821320291717755592382607} a^{7} - \frac{5272371641158458457963176936071114}{1864078287613821320291717755592382607} a^{6} + \frac{745056240519489815038389166162390687}{1864078287613821320291717755592382607} a^{5} - \frac{15575536283744150804544911734113318}{43350657851484216750970180362613549} a^{4} - \frac{731660647313173202817472763529699716}{1864078287613821320291717755592382607} a^{3} + \frac{364700338832595502059228905375356382}{1864078287613821320291717755592382607} a^{2} - \frac{782188272983410393313581643732279701}{1864078287613821320291717755592382607} a - \frac{815274338127260072187650786014832903}{1864078287613821320291717755592382607}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 613729969.233 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5120 |
| The 44 conjugacy class representatives for t20n310 |
| Character table for t20n310 is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.10.451311402416281.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }{,}\,{\href{/LocalNumberField/2.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{10}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| 1451 | Data not computed | ||||||