Normalized defining polynomial
\( x^{20} - 2 x^{18} - 18 x^{17} - 55 x^{16} + 66 x^{15} + 22 x^{14} + 610 x^{13} - 67 x^{12} - 1062 x^{11} - 250 x^{10} - 6076 x^{9} + 7531 x^{8} - 4558 x^{7} + 17274 x^{6} - 2960 x^{5} - 10528 x^{4} - 1164 x^{3} + 1018 x^{2} + 260 x + 17 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-29362065541413192630112331235328=-\,2^{30}\cdot 43^{3}\cdot 61^{4}\cdot 397^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.44$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 43, 61, 397$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{658688771991373818738533738324327134465} a^{19} + \frac{318294774969789479251678354420170649192}{658688771991373818738533738324327134465} a^{18} - \frac{214475317818547964168550682016340252398}{658688771991373818738533738324327134465} a^{17} + \frac{266893180304690545161384734820810729016}{658688771991373818738533738324327134465} a^{16} - \frac{15172085050905390004925191768280623508}{658688771991373818738533738324327134465} a^{15} - \frac{30573937936040774077765124330606715966}{131737754398274763747706747664865426893} a^{14} - \frac{183769441461591791839653867133148925368}{658688771991373818738533738324327134465} a^{13} + \frac{259250099550777183014775904168733762594}{658688771991373818738533738324327134465} a^{12} + \frac{232251462568343737685522464779972645576}{658688771991373818738533738324327134465} a^{11} + \frac{5132892871680184248421205271988820696}{131737754398274763747706747664865426893} a^{10} + \frac{58262111638011709499060883501875147853}{131737754398274763747706747664865426893} a^{9} - \frac{181399558705309797351592160895311362366}{658688771991373818738533738324327134465} a^{8} - \frac{308166907872348084168314594431738150621}{658688771991373818738533738324327134465} a^{7} - \frac{54824516359982895822683847759211629709}{131737754398274763747706747664865426893} a^{6} - \frac{108097344909707113312116283624984111571}{658688771991373818738533738324327134465} a^{5} - \frac{138196247651510571125531173984481773237}{658688771991373818738533738324327134465} a^{4} - \frac{41929968901520381607902648211303931192}{658688771991373818738533738324327134465} a^{3} + \frac{201801378658807798183985431086830753022}{658688771991373818738533738324327134465} a^{2} + \frac{110261827648586299749707796192280730157}{658688771991373818738533738324327134465} a + \frac{13034549958066324779666559261709152872}{38746398352433754043443161077901596145}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 348363701.673 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1966080 |
| The 280 conjugacy class representatives for t20n990 are not computed |
| Character table for t20n990 is not computed |
Intermediate fields
| 5.5.24217.1, 10.8.25823142734848.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | $20$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.8.0.1}{8} }$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.8.0.1}{8} }$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | $20$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 43 | Data not computed | ||||||
| $61$ | $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.4.2.1 | $x^{4} + 183 x^{2} + 14884$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 61.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 61.4.2.1 | $x^{4} + 183 x^{2} + 14884$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 61.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 397 | Data not computed | ||||||