Normalized defining polynomial
\( x^{20} - 8 x^{19} + 18 x^{18} + 12 x^{17} - 102 x^{16} + 40 x^{15} + 296 x^{14} + 120 x^{13} - 1518 x^{12} + 1910 x^{11} - 1404 x^{10} - 352 x^{9} + 3091 x^{8} - 1944 x^{7} - 1440 x^{6} + 1630 x^{5} - 118 x^{4} - 348 x^{3} + 150 x^{2} - 22 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2906949957743139152698231750656=-\,2^{30}\cdot 3^{10}\cdot 71^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.36$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{43742184135369647484857874613} a^{19} + \frac{9165753285209100682464976622}{43742184135369647484857874613} a^{18} + \frac{2262437461752063954815592008}{43742184135369647484857874613} a^{17} + \frac{1781511331735712811880393990}{43742184135369647484857874613} a^{16} + \frac{718580191892042431299650685}{3364783395028434421912144201} a^{15} - \frac{1269164648295343708150756266}{43742184135369647484857874613} a^{14} - \frac{921363972729021355881347649}{3364783395028434421912144201} a^{13} + \frac{19430679017490462772751098284}{43742184135369647484857874613} a^{12} - \frac{9706008319359881811575417528}{43742184135369647484857874613} a^{11} + \frac{4362326646059123395575400813}{43742184135369647484857874613} a^{10} + \frac{1748679874620370148512107183}{43742184135369647484857874613} a^{9} + \frac{21046196869347908873399837171}{43742184135369647484857874613} a^{8} + \frac{6552380226618852069734594892}{43742184135369647484857874613} a^{7} + \frac{10418413431873814179378054712}{43742184135369647484857874613} a^{6} + \frac{7391598681369882465906301839}{43742184135369647484857874613} a^{5} + \frac{4349341119097939769700827574}{43742184135369647484857874613} a^{4} - \frac{1935823632159236536771964555}{43742184135369647484857874613} a^{3} - \frac{18821638981129003289188745344}{43742184135369647484857874613} a^{2} - \frac{153352355623662888344505804}{3364783395028434421912144201} a + \frac{14809390135731919998696517693}{43742184135369647484857874613}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 81132481.0588 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 51200 |
| The 152 conjugacy class representatives for t20n647 are not computed |
| Character table for t20n647 is not computed |
Intermediate fields
| \(\Q(\sqrt{3}) \), 10.10.6323239406592.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{6}$ | $20$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ | $20$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $71$ | 71.10.0.1 | $x^{10} - x + 22$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ |
| 71.10.9.5 | $x^{10} - 18176$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |