Properties

Label 20.10.2906949957...0656.2
Degree $20$
Signature $[10, 5]$
Discriminant $-\,2^{30}\cdot 3^{10}\cdot 71^{9}$
Root discriminant $33.36$
Ramified primes $2, 3, 71$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T647

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-32, -384, 608, 1792, -2880, -1504, 2192, 2736, -1936, -2112, 1168, 800, -148, -592, 312, 64, -124, 40, 6, -6, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 6*x^19 + 6*x^18 + 40*x^17 - 124*x^16 + 64*x^15 + 312*x^14 - 592*x^13 - 148*x^12 + 800*x^11 + 1168*x^10 - 2112*x^9 - 1936*x^8 + 2736*x^7 + 2192*x^6 - 1504*x^5 - 2880*x^4 + 1792*x^3 + 608*x^2 - 384*x - 32)
 
gp: K = bnfinit(x^20 - 6*x^19 + 6*x^18 + 40*x^17 - 124*x^16 + 64*x^15 + 312*x^14 - 592*x^13 - 148*x^12 + 800*x^11 + 1168*x^10 - 2112*x^9 - 1936*x^8 + 2736*x^7 + 2192*x^6 - 1504*x^5 - 2880*x^4 + 1792*x^3 + 608*x^2 - 384*x - 32, 1)
 

Normalized defining polynomial

\( x^{20} - 6 x^{19} + 6 x^{18} + 40 x^{17} - 124 x^{16} + 64 x^{15} + 312 x^{14} - 592 x^{13} - 148 x^{12} + 800 x^{11} + 1168 x^{10} - 2112 x^{9} - 1936 x^{8} + 2736 x^{7} + 2192 x^{6} - 1504 x^{5} - 2880 x^{4} + 1792 x^{3} + 608 x^{2} - 384 x - 32 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[10, 5]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-2906949957743139152698231750656=-\,2^{30}\cdot 3^{10}\cdot 71^{9}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $33.36$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 71$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{4} a^{8}$, $\frac{1}{4} a^{9}$, $\frac{1}{4} a^{10}$, $\frac{1}{4} a^{11}$, $\frac{1}{8} a^{12}$, $\frac{1}{8} a^{13}$, $\frac{1}{8} a^{14}$, $\frac{1}{8} a^{15}$, $\frac{1}{16} a^{16}$, $\frac{1}{16} a^{17}$, $\frac{1}{16} a^{18}$, $\frac{1}{568907098374885904} a^{19} - \frac{7057933987075071}{284453549187442952} a^{18} - \frac{8815863391712691}{284453549187442952} a^{17} - \frac{5820726879558279}{284453549187442952} a^{16} + \frac{5063022498942663}{284453549187442952} a^{15} + \frac{769053319806078}{35556693648430369} a^{14} - \frac{11202594215848091}{284453549187442952} a^{13} + \frac{8147412682695555}{142226774593721476} a^{12} - \frac{387958605620284}{35556693648430369} a^{11} + \frac{3995257324644271}{71113387296860738} a^{10} - \frac{13710681958820489}{142226774593721476} a^{9} - \frac{4953877364565977}{142226774593721476} a^{8} - \frac{15886885677225221}{71113387296860738} a^{7} - \frac{643979646719764}{35556693648430369} a^{6} + \frac{6743508306528441}{35556693648430369} a^{5} - \frac{14715903216840455}{71113387296860738} a^{4} - \frac{5961581313629066}{35556693648430369} a^{3} + \frac{3902950594593520}{35556693648430369} a^{2} + \frac{1227042526901804}{35556693648430369} a - \frac{9650071807200692}{35556693648430369}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $14$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 56209100.0398 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T647:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 51200
The 152 conjugacy class representatives for t20n647 are not computed
Character table for t20n647 is not computed

Intermediate fields

\(\Q(\sqrt{3}) \), 10.10.6323239406592.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ $20$ ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ $20$ ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ $20$ ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ $20$ ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$3$3.10.5.1$x^{10} - 18 x^{6} + 81 x^{2} - 243$$2$$5$$5$$C_{10}$$[\ ]_{2}^{5}$
3.10.5.1$x^{10} - 18 x^{6} + 81 x^{2} - 243$$2$$5$$5$$C_{10}$$[\ ]_{2}^{5}$
$71$71.5.0.1$x^{5} - x + 8$$1$$5$$0$$C_5$$[\ ]^{5}$
71.5.0.1$x^{5} - x + 8$$1$$5$$0$$C_5$$[\ ]^{5}$
71.10.9.7$x^{10} + 568$$10$$1$$9$$C_{10}$$[\ ]_{10}$