Normalized defining polynomial
\( x^{20} - 10 x^{19} + 38 x^{18} - 42 x^{17} - 185 x^{16} + 892 x^{15} - 1788 x^{14} + 2006 x^{13} - 1504 x^{12} + 1280 x^{11} - 740 x^{10} - 1364 x^{9} + 1747 x^{8} + 408 x^{7} + 296 x^{6} - 910 x^{5} - 177 x^{4} + 142 x^{3} + 32 x^{2} - 14 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2906949957743139152698231750656=-\,2^{30}\cdot 3^{10}\cdot 71^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.36$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{61} a^{18} - \frac{17}{61} a^{17} + \frac{18}{61} a^{16} - \frac{1}{61} a^{15} + \frac{4}{61} a^{14} + \frac{27}{61} a^{13} + \frac{29}{61} a^{12} + \frac{2}{61} a^{11} + \frac{2}{61} a^{10} + \frac{12}{61} a^{9} - \frac{4}{61} a^{8} - \frac{15}{61} a^{7} + \frac{29}{61} a^{6} - \frac{28}{61} a^{5} - \frac{1}{61} a^{4} + \frac{23}{61} a^{2} - \frac{19}{61} a + \frac{18}{61}$, $\frac{1}{3108729163186258474746727} a^{19} - \frac{576462395225890350074}{3108729163186258474746727} a^{18} + \frac{53404725210364453097607}{3108729163186258474746727} a^{17} + \frac{1228503420205399548160424}{3108729163186258474746727} a^{16} + \frac{1275208971855337328793807}{3108729163186258474746727} a^{15} + \frac{759433653843315546473701}{3108729163186258474746727} a^{14} - \frac{188362098058594536752971}{3108729163186258474746727} a^{13} - \frac{619083052272126922493517}{3108729163186258474746727} a^{12} + \frac{1104505517575787559573970}{3108729163186258474746727} a^{11} - \frac{1081905466274367616166913}{3108729163186258474746727} a^{10} - \frac{646511737495988162515433}{3108729163186258474746727} a^{9} - \frac{1335752139401584111445665}{3108729163186258474746727} a^{8} - \frac{842037658339129893950119}{3108729163186258474746727} a^{7} - \frac{350675841565057057505010}{3108729163186258474746727} a^{6} + \frac{1266413003118819101605482}{3108729163186258474746727} a^{5} - \frac{872090196623470448256621}{3108729163186258474746727} a^{4} - \frac{281265753207327241840534}{3108729163186258474746727} a^{3} - \frac{909802613453061273423244}{3108729163186258474746727} a^{2} + \frac{132334653551778933230673}{3108729163186258474746727} a - \frac{1475021744750169551355995}{3108729163186258474746727}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 80372121.2014 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 51200 |
| The 152 conjugacy class representatives for t20n647 are not computed |
| Character table for t20n647 is not computed |
Intermediate fields
| \(\Q(\sqrt{3}) \), 10.10.6323239406592.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{6}$ | $20$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ | $20$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $71$ | 71.10.9.5 | $x^{10} - 18176$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 71.10.0.1 | $x^{10} - x + 22$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |