Normalized defining polynomial
\( x^{20} - 3 x^{19} - 4 x^{18} + 36 x^{17} - 105 x^{16} + 95 x^{15} + 67 x^{14} - 317 x^{13} + 503 x^{12} - 393 x^{11} + 560 x^{10} - 1052 x^{9} - 562 x^{8} + 3953 x^{7} - 722 x^{6} - 3055 x^{5} + 508 x^{4} + 538 x^{3} - 176 x^{2} - 12 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-263429739612717160369873046875=-\,5^{15}\cdot 71^{5}\cdot 263^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.58$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 71, 263$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{13} a^{18} - \frac{3}{13} a^{17} + \frac{3}{13} a^{16} + \frac{2}{13} a^{15} - \frac{6}{13} a^{14} + \frac{5}{13} a^{13} - \frac{1}{13} a^{12} + \frac{4}{13} a^{11} + \frac{2}{13} a^{10} - \frac{1}{13} a^{9} + \frac{2}{13} a^{8} - \frac{6}{13} a^{7} - \frac{2}{13} a^{6} - \frac{2}{13} a^{5} + \frac{5}{13} a^{4} - \frac{1}{13} a^{3} - \frac{3}{13} a^{2} - \frac{2}{13} a - \frac{2}{13}$, $\frac{1}{1125321185688398759207647914412193} a^{19} - \frac{4393064209255686941688334383199}{1125321185688398759207647914412193} a^{18} - \frac{159028702481422995556566097755046}{1125321185688398759207647914412193} a^{17} + \frac{428267137233457673673801621570495}{1125321185688398759207647914412193} a^{16} - \frac{202759121389896398363864499307877}{1125321185688398759207647914412193} a^{15} - \frac{288309366079539626203409211220379}{1125321185688398759207647914412193} a^{14} - \frac{285462907065861060952184426554452}{1125321185688398759207647914412193} a^{13} + \frac{143149665776621723578237079705398}{1125321185688398759207647914412193} a^{12} + \frac{10243878736911934161815109868583}{86563168129876827631357531877861} a^{11} - \frac{230129174129982620598084163997451}{1125321185688398759207647914412193} a^{10} + \frac{297729262962514330038490096839189}{1125321185688398759207647914412193} a^{9} - \frac{282170900529783147299502600075984}{1125321185688398759207647914412193} a^{8} - \frac{366925167034906496784532684679278}{1125321185688398759207647914412193} a^{7} - \frac{288468562298503919153212023524958}{1125321185688398759207647914412193} a^{6} - \frac{335269004632111219908817391880945}{1125321185688398759207647914412193} a^{5} - \frac{491313040945562663894579682675828}{1125321185688398759207647914412193} a^{4} - \frac{973885067059409631202127610482}{5891733956483763137212816305823} a^{3} + \frac{287077579758227658326464598463682}{1125321185688398759207647914412193} a^{2} + \frac{514657927246220290835827940996554}{1125321185688398759207647914412193} a + \frac{99810055479977397323040555249708}{1125321185688398759207647914412193}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 18658688.4911 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 14745600 |
| The 396 conjugacy class representatives for t20n1036 are not computed |
| Character table for t20n1036 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.6.1089627903125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | $20$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | $20$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.12.9.1 | $x^{12} - 10 x^{8} - 375 x^{4} - 2000$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ | |
| 71 | Data not computed | ||||||
| 263 | Data not computed | ||||||