Normalized defining polynomial
\( x^{20} - 2 x^{19} - 17 x^{18} - 52 x^{16} + 52 x^{15} + 506 x^{14} - 108 x^{13} + 908 x^{12} - 2722 x^{11} + 7509 x^{10} + 5980 x^{9} - 18299 x^{8} + 1038 x^{7} + 13852 x^{6} - 6192 x^{5} - 2540 x^{4} + 1890 x^{3} - 266 x^{2} + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2592814671517088339518493318709248=-\,2^{20}\cdot 23\cdot 401^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $46.85$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 23, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{3} a^{17} + \frac{1}{3} a^{16} + \frac{1}{3} a^{14} + \frac{1}{3} a^{13} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{9} a^{18} + \frac{2}{9} a^{16} + \frac{1}{9} a^{15} + \frac{1}{3} a^{14} - \frac{4}{9} a^{13} + \frac{1}{3} a^{12} - \frac{1}{9} a^{11} + \frac{4}{9} a^{9} - \frac{4}{9} a^{8} + \frac{1}{3} a^{7} + \frac{4}{9} a^{4} + \frac{2}{9} a^{3} + \frac{2}{9} a + \frac{2}{9}$, $\frac{1}{1064151845587737266300676841801096491201} a^{19} + \frac{4660469956503130919661278395104607960}{354717281862579088766892280600365497067} a^{18} + \frac{61812274356783524530903031111774131733}{1064151845587737266300676841801096491201} a^{17} - \frac{183195109608780291056039802418956498134}{1064151845587737266300676841801096491201} a^{16} - \frac{173986103073878246079168220042786236058}{354717281862579088766892280600365497067} a^{15} + \frac{18941073256977107515733043362012829503}{1064151845587737266300676841801096491201} a^{14} + \frac{641602879701399524283053194695511386}{1424567397038470236011615584740423683} a^{13} - \frac{251298355827520898492810912131004524279}{1064151845587737266300676841801096491201} a^{12} - \frac{108442065383004821650286704565192409682}{354717281862579088766892280600365497067} a^{11} + \frac{288318856459166077112700901003076802682}{1064151845587737266300676841801096491201} a^{10} + \frac{223187938628604854499687881877798436037}{1064151845587737266300676841801096491201} a^{9} + \frac{42084556707269269464026053993627569405}{118239093954193029588964093533455165689} a^{8} + \frac{52375742527960387468143875145908992846}{118239093954193029588964093533455165689} a^{7} + \frac{48801158941207018228540070919400195717}{118239093954193029588964093533455165689} a^{6} - \frac{454716166076081668221594702959546478662}{1064151845587737266300676841801096491201} a^{5} - \frac{458774228845319936689576301858764802977}{1064151845587737266300676841801096491201} a^{4} - \frac{109466883829387734631485746662771452868}{354717281862579088766892280600365497067} a^{3} - \frac{256165734313769058952438723448871381496}{1064151845587737266300676841801096491201} a^{2} - \frac{421200119488854181448993290360541644141}{1064151845587737266300676841801096491201} a + \frac{44079540343413678640377344620417662215}{354717281862579088766892280600365497067}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5987897898.17 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 163840 |
| The 277 conjugacy class representatives for t20n852 are not computed |
| Character table for t20n852 is not computed |
Intermediate fields
| 5.5.160801.1, 10.10.10617489000449024.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $23$ | 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 23.8.0.1 | $x^{8} + x^{2} - 2 x + 5$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 401 | Data not computed | ||||||