Normalized defining polynomial
\( x^{20} - 2 x^{19} - 9 x^{18} + 20 x^{17} - 61 x^{16} - 54 x^{15} + 293 x^{14} + 924 x^{13} + 1861 x^{12} - 4186 x^{11} - 13695 x^{10} + 324 x^{9} + 25195 x^{8} + 18102 x^{7} - 5175 x^{6} - 8720 x^{5} - 7797 x^{4} - 12590 x^{3} - 2553 x^{2} + 7604 x + 3262 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-258429699769673174020904974286848=-\,2^{38}\cdot 7^{9}\cdot 13^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $41.75$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{7} a^{16} + \frac{2}{7} a^{15} - \frac{2}{7} a^{13} + \frac{1}{7} a^{12} + \frac{2}{7} a^{11} + \frac{1}{7} a^{9} + \frac{3}{7} a^{8} - \frac{3}{7} a^{7} - \frac{1}{7} a^{6} - \frac{1}{7} a^{5} + \frac{3}{7} a^{4} + \frac{3}{7} a^{3} + \frac{3}{7} a^{2} + \frac{2}{7} a$, $\frac{1}{35} a^{17} + \frac{2}{7} a^{15} - \frac{9}{35} a^{14} - \frac{9}{35} a^{13} + \frac{1}{5} a^{12} + \frac{17}{35} a^{11} - \frac{13}{35} a^{10} + \frac{3}{7} a^{9} - \frac{16}{35} a^{8} + \frac{1}{7} a^{7} + \frac{3}{7} a^{6} - \frac{16}{35} a^{5} - \frac{2}{7} a^{4} + \frac{11}{35} a^{3} - \frac{4}{35} a^{2} - \frac{11}{35} a - \frac{1}{5}$, $\frac{1}{245} a^{18} - \frac{2}{49} a^{16} - \frac{1}{5} a^{15} + \frac{96}{245} a^{14} - \frac{58}{245} a^{13} + \frac{32}{245} a^{12} + \frac{17}{245} a^{11} + \frac{10}{49} a^{10} - \frac{36}{245} a^{9} + \frac{10}{49} a^{8} - \frac{6}{49} a^{7} - \frac{101}{245} a^{6} + \frac{9}{49} a^{5} - \frac{12}{35} a^{4} - \frac{64}{245} a^{3} - \frac{1}{245} a^{2} - \frac{82}{245} a - \frac{2}{7}$, $\frac{1}{2833728085154598475139441550639261650} a^{19} - \frac{4234201211012220408001450065247603}{2833728085154598475139441550639261650} a^{18} + \frac{18812874023663850110453510045461322}{1416864042577299237569720775319630825} a^{17} + \frac{29559173475734391222235055091723658}{1416864042577299237569720775319630825} a^{16} - \frac{416624137627729063138591364732130077}{2833728085154598475139441550639261650} a^{15} + \frac{532364751845607649752198470085236473}{2833728085154598475139441550639261650} a^{14} - \frac{15229650828240427792330987765165177}{40481829787922835359134879294846595} a^{13} + \frac{137001571056538698661865283828985477}{1416864042577299237569720775319630825} a^{12} - \frac{10730092629307272576046797442186809}{404818297879228353591348792948465950} a^{11} + \frac{76165394261181528408387706787990257}{2833728085154598475139441550639261650} a^{10} - \frac{284404768756573222457530912885628136}{1416864042577299237569720775319630825} a^{9} - \frac{69907493554329160880949012747470711}{202409148939614176795674396474232975} a^{8} - \frac{130332739260312616805113657544493163}{404818297879228353591348792948465950} a^{7} - \frac{1014280635574956438841217979704558407}{2833728085154598475139441550639261650} a^{6} - \frac{629335122172040625697640730385228384}{1416864042577299237569720775319630825} a^{5} + \frac{232619700918099215579537456253768204}{1416864042577299237569720775319630825} a^{4} - \frac{271871083549439296825144455168514281}{566745617030919695027888310127852330} a^{3} - \frac{18073963155770105801022850061278507}{80963659575845670718269758589693190} a^{2} - \frac{656498117964661177240507382034765184}{1416864042577299237569720775319630825} a + \frac{728667849758078602676581109548538}{202409148939614176795674396474232975}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4286765658.81 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 40960 |
| The 124 conjugacy class representatives for t20n633 are not computed |
| Character table for t20n633 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 5.5.6889792.1, 10.10.379753870426112.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{3}$ | R | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 13 | Data not computed | ||||||