Normalized defining polynomial
\( x^{20} + 10 x^{18} - 60 x^{16} - 490 x^{14} + 1910 x^{12} + 4914 x^{10} - 21355 x^{8} + 1480 x^{6} + 39695 x^{4} - 10380 x^{2} - 15376 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-232532096306259765625000000000000=-\,2^{12}\cdot 5^{22}\cdot 47^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $41.53$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{10} a^{10} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} + \frac{1}{5}$, $\frac{1}{10} a^{11} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} + \frac{1}{5} a$, $\frac{1}{10} a^{12} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} + \frac{1}{5} a^{2}$, $\frac{1}{10} a^{13} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} + \frac{1}{5} a^{3}$, $\frac{1}{20} a^{14} - \frac{1}{20} a^{11} - \frac{1}{20} a^{10} + \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{4} a^{6} + \frac{1}{4} a^{5} - \frac{3}{20} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{10} a + \frac{2}{5}$, $\frac{1}{20} a^{15} - \frac{1}{20} a^{12} - \frac{1}{20} a^{11} - \frac{1}{4} a^{9} - \frac{1}{2} a^{8} - \frac{1}{4} a^{7} + \frac{1}{4} a^{6} - \frac{3}{20} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{10} a^{2} - \frac{1}{10} a$, $\frac{1}{20} a^{16} - \frac{1}{20} a^{13} - \frac{1}{20} a^{12} - \frac{1}{20} a^{10} - \frac{1}{4} a^{8} + \frac{1}{4} a^{7} - \frac{3}{20} a^{6} - \frac{1}{4} a^{5} + \frac{1}{4} a^{4} + \frac{2}{5} a^{3} - \frac{1}{10} a^{2} - \frac{1}{2} a + \frac{2}{5}$, $\frac{1}{20} a^{17} - \frac{1}{20} a^{13} - \frac{1}{20} a^{10} - \frac{1}{4} a^{9} - \frac{1}{2} a^{8} + \frac{7}{20} a^{7} - \frac{1}{2} a^{6} + \frac{1}{4} a^{4} + \frac{3}{20} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a + \frac{2}{5}$, $\frac{1}{7299578289972100} a^{18} - \frac{11758617607091}{3649789144986050} a^{16} - \frac{88313004429313}{3649789144986050} a^{14} + \frac{37204497437971}{3649789144986050} a^{12} + \frac{99708954156373}{3649789144986050} a^{10} + \frac{254404590882403}{1824894572493025} a^{8} - \frac{1186417362985409}{7299578289972100} a^{6} + \frac{761006539408747}{1824894572493025} a^{4} - \frac{811419222587121}{7299578289972100} a^{2} + \frac{405492610859588}{1824894572493025}$, $\frac{1}{452573853978270200} a^{19} + \frac{635773445970786}{56571731747283775} a^{17} - \frac{88313004429313}{226286926989135100} a^{15} - \frac{1359369805010276}{56571731747283775} a^{13} - \frac{1}{20} a^{12} - \frac{497613894669721}{113143463494567550} a^{11} - \frac{1}{20} a^{10} + \frac{42481384349104381}{226286926989135100} a^{9} - \frac{74912158091703619}{452573853978270200} a^{7} - \frac{1}{4} a^{6} + \frac{14296275086268669}{226286926989135100} a^{5} - \frac{95705936992224421}{452573853978270200} a^{3} + \frac{3}{20} a^{2} - \frac{15288600712580427}{113143463494567550} a + \frac{2}{5}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 755907991.546 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20480 |
| The 128 conjugacy class representatives for t20n513 are not computed |
| Character table for t20n513 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.6903125.1, 10.10.238265673828125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.8.8.7 | $x^{8} + 2 x^{6} + 4 x^{5} + 16$ | $2$ | $4$ | $8$ | $((C_8 : C_2):C_2):C_2$ | $[2, 2, 2, 2]^{4}$ | |
| 5 | Data not computed | ||||||
| $47$ | 47.4.0.1 | $x^{4} - x + 39$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 47.4.2.2 | $x^{4} - 47 x^{2} + 28717$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 47.4.2.2 | $x^{4} - 47 x^{2} + 28717$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 47.4.2.2 | $x^{4} - 47 x^{2} + 28717$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 47.4.2.2 | $x^{4} - 47 x^{2} + 28717$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |