Normalized defining polynomial
\( x^{20} - 3 x^{19} - 4 x^{18} + 18 x^{17} - 24 x^{16} - 74 x^{15} + 138 x^{14} + 86 x^{13} - 413 x^{12} + 275 x^{11} + 1013 x^{10} - 638 x^{9} - 1421 x^{8} + 182 x^{7} + 789 x^{6} + 140 x^{5} - 128 x^{4} - 50 x^{3} - x^{2} + 4 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-22055203913038149640193817047=-\,11^{18}\cdot 1583^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.13$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 1583$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{39990955817429955073} a^{19} - \frac{17631022068248889638}{39990955817429955073} a^{18} + \frac{19609131303338589058}{39990955817429955073} a^{17} + \frac{9912850194836773321}{39990955817429955073} a^{16} - \frac{8358026841298550711}{39990955817429955073} a^{15} + \frac{18405730766269451743}{39990955817429955073} a^{14} - \frac{14445800081381218063}{39990955817429955073} a^{13} - \frac{9656941191377621261}{39990955817429955073} a^{12} - \frac{12113839220862520021}{39990955817429955073} a^{11} + \frac{13022018333185941965}{39990955817429955073} a^{10} - \frac{6072880368562987386}{39990955817429955073} a^{9} + \frac{15072877469828728586}{39990955817429955073} a^{8} + \frac{13719348023022808083}{39990955817429955073} a^{7} - \frac{7347594761198717047}{39990955817429955073} a^{6} + \frac{14227459680658565496}{39990955817429955073} a^{5} + \frac{19795909871626061361}{39990955817429955073} a^{4} - \frac{8389581353005241344}{39990955817429955073} a^{3} - \frac{8966304414834830682}{39990955817429955073} a^{2} + \frac{9671661916824108637}{39990955817429955073} a + \frac{8206536532705618161}{39990955817429955073}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5953104.25923 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 10240 |
| The 136 conjugacy class representatives for t20n432 are not computed |
| Character table for t20n432 is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.10.3732631194853.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ | $20$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.10.9.7 | $x^{10} + 2673$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.7 | $x^{10} + 2673$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| 1583 | Data not computed | ||||||