Normalized defining polynomial
\( x^{20} - 2 x^{19} - 27 x^{18} + 60 x^{17} + 81 x^{16} - 366 x^{15} + 1710 x^{14} - 3384 x^{13} - 6189 x^{12} + 32264 x^{11} - 37563 x^{10} - 42732 x^{9} + 172372 x^{8} - 118640 x^{7} - 96505 x^{6} + 120714 x^{5} - 20207 x^{4} - 4234 x^{3} + 3997 x^{2} - 738 x - 81 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-21531634880859298819479661907542016=-\,2^{20}\cdot 191\cdot 401^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $52.08$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 191, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{12} - \frac{1}{3} a^{11} + \frac{1}{3} a^{10} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{3} a^{16} - \frac{1}{3} a^{13} - \frac{1}{3} a^{12} + \frac{1}{3} a^{11} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{17} - \frac{1}{3} a^{14} - \frac{1}{3} a^{13} + \frac{1}{3} a^{12} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{3}$, $\frac{1}{249} a^{18} + \frac{7}{83} a^{17} - \frac{34}{249} a^{16} + \frac{9}{83} a^{15} + \frac{98}{249} a^{14} + \frac{29}{249} a^{13} + \frac{30}{83} a^{12} - \frac{86}{249} a^{11} + \frac{23}{249} a^{10} - \frac{16}{249} a^{9} + \frac{6}{83} a^{8} - \frac{11}{83} a^{7} + \frac{10}{83} a^{6} - \frac{35}{83} a^{5} + \frac{7}{249} a^{4} + \frac{17}{249} a^{3} - \frac{89}{249} a^{2} + \frac{80}{249} a - \frac{7}{83}$, $\frac{1}{264217530019573485701910746959814617263995145141} a^{19} + \frac{429636342677670287958441815630125420090742821}{264217530019573485701910746959814617263995145141} a^{18} - \frac{13358636343223910576797651779641855856077599552}{88072510006524495233970248986604872421331715047} a^{17} - \frac{693851694355984493775024882014260840882433105}{29357503335508165077990082995534957473777238349} a^{16} + \frac{4879731794450450319751935851960184165652816168}{29357503335508165077990082995534957473777238349} a^{15} - \frac{27183289206867702294827596335944890072592696336}{88072510006524495233970248986604872421331715047} a^{14} - \frac{6964384982345749497602057618835610119100866251}{88072510006524495233970248986604872421331715047} a^{13} + \frac{13756597010002009668403541449020630767592317320}{29357503335508165077990082995534957473777238349} a^{12} - \frac{19455242134602622659750909392278399108724377814}{88072510006524495233970248986604872421331715047} a^{11} - \frac{68570608641074773428241867499478937744265292628}{264217530019573485701910746959814617263995145141} a^{10} - \frac{42187833075273238925295471913555701873629862901}{88072510006524495233970248986604872421331715047} a^{9} - \frac{11847421226489318305921825618628669593928413340}{29357503335508165077990082995534957473777238349} a^{8} - \frac{77343344204497186968210695626559802498983535038}{264217530019573485701910746959814617263995145141} a^{7} - \frac{46846899374066118247954562694772026050515465628}{264217530019573485701910746959814617263995145141} a^{6} - \frac{18943098949918494438659390470601239939450151521}{264217530019573485701910746959814617263995145141} a^{5} - \frac{23476426930736877243108723231522525261835899734}{88072510006524495233970248986604872421331715047} a^{4} - \frac{130521633234974816286926083747918306395452511251}{264217530019573485701910746959814617263995145141} a^{3} + \frac{60938956683749376684706265765038345597053295880}{264217530019573485701910746959814617263995145141} a^{2} - \frac{112035156179753492994490815061508559251315716640}{264217530019573485701910746959814617263995145141} a + \frac{1594281369889433818593551709499660402107254380}{29357503335508165077990082995534957473777238349}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 19974023282.2 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 163840 |
| The 277 conjugacy class representatives for t20n852 are not computed |
| Character table for t20n852 is not computed |
Intermediate fields
| 5.5.160801.1, 10.10.10617489000449024.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.3 | $x^{10} - 9 x^{8} + 22 x^{6} - 46 x^{4} + 9 x^{2} - 9$ | $2$ | $5$ | $10$ | $C_2^4 : C_5$ | $[2, 2, 2, 2]^{5}$ |
| 2.10.10.3 | $x^{10} - 9 x^{8} + 22 x^{6} - 46 x^{4} + 9 x^{2} - 9$ | $2$ | $5$ | $10$ | $C_2^4 : C_5$ | $[2, 2, 2, 2]^{5}$ | |
| $191$ | $\Q_{191}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{191}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 191.2.0.1 | $x^{2} - x + 19$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 191.2.0.1 | $x^{2} - x + 19$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 191.2.1.2 | $x^{2} + 382$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 191.4.0.1 | $x^{4} - x + 28$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 191.8.0.1 | $x^{8} - x + 58$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 401 | Data not computed | ||||||