Normalized defining polynomial
\( x^{20} - 8 x^{19} + 20 x^{18} + 12 x^{17} - 183 x^{16} + 262 x^{15} + 481 x^{14} - 1094 x^{13} - 918 x^{12} + 3284 x^{11} - 1068 x^{10} + 1258 x^{9} - 5727 x^{8} - 7816 x^{7} + 23162 x^{6} - 1428 x^{5} - 36585 x^{4} + 3382 x^{3} + 32037 x^{2} + 15858 x + 2241 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-21531634880859298819479661907542016=-\,2^{20}\cdot 191\cdot 401^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $52.08$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 191, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{3} a^{17} - \frac{1}{3} a^{16} + \frac{1}{3} a^{15} + \frac{1}{3} a^{14} + \frac{1}{3} a^{13} - \frac{1}{3} a^{12} + \frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{117} a^{18} - \frac{1}{9} a^{17} - \frac{41}{117} a^{16} - \frac{17}{117} a^{15} + \frac{37}{117} a^{14} - \frac{4}{117} a^{13} + \frac{17}{39} a^{12} - \frac{2}{9} a^{11} + \frac{40}{117} a^{10} + \frac{14}{39} a^{9} - \frac{56}{117} a^{7} + \frac{4}{9} a^{6} + \frac{11}{39} a^{5} - \frac{4}{9} a^{4} + \frac{56}{117} a^{3} - \frac{10}{117} a^{2} + \frac{1}{39} a + \frac{6}{13}$, $\frac{1}{65217381884652944073793447433947741148547} a^{19} + \frac{24241444131682888461435146088601914439}{21739127294884314691264482477982580382849} a^{18} - \frac{3189721277684092789027491940955235209576}{21739127294884314691264482477982580382849} a^{17} + \frac{13621434565275144278543301088219596484715}{65217381884652944073793447433947741148547} a^{16} - \frac{12549260767039202715729783232500946757791}{65217381884652944073793447433947741148547} a^{15} + \frac{6575946120112114364025073865911104318262}{21739127294884314691264482477982580382849} a^{14} - \frac{17376011492538985909661213300156385211564}{65217381884652944073793447433947741148547} a^{13} - \frac{3825285022663628559224959084239527683250}{65217381884652944073793447433947741148547} a^{12} - \frac{2465708722813728496200768072139745310004}{65217381884652944073793447433947741148547} a^{11} + \frac{7113182516615513652161019328478723056738}{65217381884652944073793447433947741148547} a^{10} + \frac{10768131836345608729219428032756170841582}{21739127294884314691264482477982580382849} a^{9} + \frac{5757693656066728662919245375793226603533}{65217381884652944073793447433947741148547} a^{8} + \frac{27384066188344539771348690945244688162339}{65217381884652944073793447433947741148547} a^{7} - \frac{32202359790839998718396238344938661190566}{65217381884652944073793447433947741148547} a^{6} - \frac{20196679503668869566038553072396635417212}{65217381884652944073793447433947741148547} a^{5} + \frac{31350277322257410043194643348270508945611}{65217381884652944073793447433947741148547} a^{4} + \frac{2456332822201959039799902465950111265217}{65217381884652944073793447433947741148547} a^{3} - \frac{30195576712506571580473630696228615118986}{65217381884652944073793447433947741148547} a^{2} + \frac{5162236021464080130806629266506452803511}{21739127294884314691264482477982580382849} a - \frac{13149955350359490499532301939778985924}{7246375764961438230421494159327526794283}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 19809733396.1 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 163840 |
| The 277 conjugacy class representatives for t20n852 are not computed |
| Character table for t20n852 is not computed |
Intermediate fields
| 5.5.160801.1, 10.10.10617489000449024.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $191$ | $\Q_{191}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{191}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 191.2.0.1 | $x^{2} - x + 19$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 191.2.1.2 | $x^{2} + 382$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 191.2.0.1 | $x^{2} - x + 19$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 191.4.0.1 | $x^{4} - x + 28$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 191.8.0.1 | $x^{8} - x + 58$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 401 | Data not computed | ||||||