Normalized defining polynomial
\( x^{20} - 26 x^{18} - 20 x^{17} + 303 x^{16} + 436 x^{15} - 2442 x^{14} - 4456 x^{13} + 13882 x^{12} + 28708 x^{11} - 38018 x^{10} - 123496 x^{9} - 6466 x^{8} + 325044 x^{7} + 170086 x^{6} - 455176 x^{5} - 33791 x^{4} + 327188 x^{3} - 199392 x^{2} - 98868 x + 76807 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-20562460332300807986799747065184256=-\,2^{48}\cdot 31^{7}\cdot 227^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $51.96$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 31, 227$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{5}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} + \frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{1}{4} a^{2} - \frac{1}{4}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{13} - \frac{1}{4} a^{11} - \frac{1}{4} a^{9} + \frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{4} a^{3} - \frac{1}{4} a$, $\frac{1}{4} a^{16} - \frac{1}{4}$, $\frac{1}{8} a^{17} - \frac{1}{8} a^{16} - \frac{1}{4} a^{13} - \frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{8} a + \frac{1}{8}$, $\frac{1}{216} a^{18} + \frac{1}{24} a^{17} - \frac{1}{108} a^{15} - \frac{1}{18} a^{14} - \frac{2}{9} a^{13} + \frac{5}{54} a^{11} + \frac{11}{108} a^{10} + \frac{25}{108} a^{9} - \frac{1}{36} a^{8} - \frac{17}{36} a^{7} + \frac{5}{54} a^{6} - \frac{1}{9} a^{5} + \frac{5}{54} a^{4} + \frac{4}{27} a^{3} - \frac{43}{216} a^{2} - \frac{13}{72} a + \frac{23}{108}$, $\frac{1}{17211285059489788018811164690376130086276330669352} a^{19} - \frac{34010945982970289759326091926412993130110009447}{17211285059489788018811164690376130086276330669352} a^{18} + \frac{797711519966939630828182644197414935444655681}{956182503304988223267286927243118338126462814964} a^{17} + \frac{10956171145346641824523684587277594510342878679}{4302821264872447004702791172594032521569082667338} a^{16} - \frac{197176990552190170093993204295172019131011273059}{8605642529744894009405582345188065043138165334676} a^{15} + \frac{61382883359404357236852249081499840556252925151}{1434273754957482334900930390864677507189694222446} a^{14} + \frac{702929343264809803236468017594805949364595276613}{2868547509914964669801860781729355014379388444892} a^{13} - \frac{83813752960096035519683235032140042402326890321}{2151410632436223502351395586297016260784541333669} a^{12} + \frac{33151560856958358347497536465161416053781065853}{717136877478741167450465195432338753594847111223} a^{11} + \frac{56536106859538419191119489644804172335470778953}{318727501101662741089095642414372779375487604988} a^{10} - \frac{144047011754714648456568969903090917848905002311}{4302821264872447004702791172594032521569082667338} a^{9} + \frac{69756423228372992524901790098953400823839570463}{318727501101662741089095642414372779375487604988} a^{8} + \frac{879116883660259031261245396717462186533904312621}{8605642529744894009405582345188065043138165334676} a^{7} + \frac{1717237956138409986457990934603635663079435892497}{4302821264872447004702791172594032521569082667338} a^{6} + \frac{3537834962128425717298139583906982062136905395437}{8605642529744894009405582345188065043138165334676} a^{5} - \frac{1728194088322774882060766583048071458099318819805}{4302821264872447004702791172594032521569082667338} a^{4} + \frac{4958120584989789559027880454228066863570152483543}{17211285059489788018811164690376130086276330669352} a^{3} - \frac{3385951957914078673008610726896628369795071988435}{17211285059489788018811164690376130086276330669352} a^{2} - \frac{1368674723724307769897302674936252645140362554241}{8605642529744894009405582345188065043138165334676} a - \frac{1143303313004759963386363304541437764696541655967}{8605642529744894009405582345188065043138165334676}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 47048090807.7 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 14745600 |
| The 384 conjugacy class representatives for t20n1037 are not computed |
| Character table for t20n1037 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 10.10.207699287474176.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | $16{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | $16{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | $16{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }$ | ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }$ | R | $16{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.11.1 | $x^{6} + 14$ | $6$ | $1$ | $11$ | $D_{6}$ | $[3]_{3}^{2}$ |
| 2.6.11.1 | $x^{6} + 14$ | $6$ | $1$ | $11$ | $D_{6}$ | $[3]_{3}^{2}$ | |
| 2.8.26.1 | $x^{8} + 4 x^{6} + 8 x^{3} + 8 x^{2} + 2$ | $8$ | $1$ | $26$ | $C_2^2:C_4$ | $[2, 3, 7/2, 4]$ | |
| 31 | Data not computed | ||||||
| 227 | Data not computed | ||||||