Normalized defining polynomial
\( x^{20} + 12 x^{18} - 100 x^{16} - 524 x^{14} + 2940 x^{12} - 698 x^{10} - 6328 x^{8} + 1512 x^{6} + 3920 x^{4} - 196 x^{2} - 343 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-197860238886156023859755370938368=-\,2^{32}\cdot 7^{11}\cdot 13^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $41.19$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{28} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{5}{14} a^{6} - \frac{3}{7} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{28} a^{11} - \frac{1}{2} a^{8} - \frac{5}{14} a^{7} - \frac{3}{7} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{28} a^{12} - \frac{1}{2} a^{9} - \frac{5}{14} a^{8} - \frac{3}{7} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{28} a^{13} - \frac{5}{14} a^{9} - \frac{3}{7} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{28} a^{14} - \frac{3}{7} a^{8} - \frac{1}{2} a^{7} + \frac{3}{7} a^{6} - \frac{1}{2} a^{5} - \frac{1}{28} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{28} a^{15} - \frac{3}{7} a^{9} - \frac{1}{2} a^{8} + \frac{3}{7} a^{7} - \frac{1}{2} a^{6} - \frac{1}{28} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{1820} a^{16} - \frac{19}{1820} a^{14} - \frac{1}{140} a^{12} - \frac{2}{455} a^{10} + \frac{437}{910} a^{8} - \frac{701}{1820} a^{6} - \frac{1}{2} a^{5} + \frac{3}{28} a^{4} - \frac{1}{2} a^{3} + \frac{57}{260} a^{2} - \frac{51}{130}$, $\frac{1}{1820} a^{17} - \frac{19}{1820} a^{15} - \frac{1}{140} a^{13} - \frac{2}{455} a^{11} + \frac{437}{910} a^{9} - \frac{701}{1820} a^{7} - \frac{1}{2} a^{6} + \frac{3}{28} a^{5} - \frac{1}{2} a^{4} + \frac{57}{260} a^{3} - \frac{51}{130} a$, $\frac{1}{4458249779620} a^{18} + \frac{136833651}{1114562444905} a^{16} - \frac{6234694133}{445824977962} a^{14} + \frac{64144440053}{4458249779620} a^{12} + \frac{45411081}{31844641283} a^{10} - \frac{79892115263}{342942290740} a^{8} - \frac{1}{2} a^{7} - \frac{28745877301}{159223206415} a^{6} + \frac{53095948488}{159223206415} a^{4} - \frac{1}{2} a^{3} - \frac{82192311}{3955856060} a^{2} + \frac{9039956293}{22746172345}$, $\frac{1}{8916499559240} a^{19} - \frac{1}{8916499559240} a^{18} - \frac{1902253187}{8916499559240} a^{17} + \frac{1902253187}{8916499559240} a^{16} - \frac{15804773301}{8916499559240} a^{15} + \frac{15804773301}{8916499559240} a^{14} - \frac{63234125079}{8916499559240} a^{13} + \frac{63234125079}{8916499559240} a^{12} - \frac{19038421821}{1273785651320} a^{11} + \frac{19038421821}{1273785651320} a^{10} - \frac{1587305163603}{8916499559240} a^{9} + \frac{1587305163603}{8916499559240} a^{8} - \frac{6151823061}{1273785651320} a^{7} - \frac{630741002599}{1273785651320} a^{6} - \frac{219793480603}{1273785651320} a^{5} + \frac{219793480603}{1273785651320} a^{4} + \frac{2017454367}{7911712120} a^{3} + \frac{1938401693}{7911712120} a^{2} - \frac{41877043027}{181969378760} a + \frac{41877043027}{181969378760}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1493401065.85 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 40960 |
| The 124 conjugacy class representatives for t20n633 are not computed |
| Character table for t20n633 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 5.5.6889792.1, 10.10.379753870426112.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{3}$ | R | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.8.3 | $x^{4} + 6 x^{2} + 4 x + 14$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ |
| 2.8.12.1 | $x^{8} + 6 x^{6} + 8 x^{5} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
| 2.8.12.1 | $x^{8} + 6 x^{6} + 8 x^{5} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
| $7$ | 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 7.8.6.3 | $x^{8} - 7 x^{4} + 147$ | $4$ | $2$ | $6$ | $C_8:C_2$ | $[\ ]_{4}^{4}$ | |
| 13 | Data not computed | ||||||