Normalized defining polynomial
\( x^{20} - 9 x^{19} + 28 x^{18} - 33 x^{17} + 32 x^{16} - 142 x^{15} + 161 x^{14} + 433 x^{13} - 718 x^{12} - 430 x^{11} + 211 x^{10} + 2199 x^{9} - 1895 x^{8} - 2702 x^{7} + 8059 x^{6} - 1473 x^{5} - 11463 x^{4} + 4686 x^{3} + 4857 x^{2} - 3056 x + 397 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-182567274194490055859030886811=-\,11^{16}\cdot 331^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.04$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 331$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{199} a^{18} + \frac{89}{199} a^{17} + \frac{95}{199} a^{16} - \frac{42}{199} a^{15} - \frac{61}{199} a^{14} - \frac{14}{199} a^{13} - \frac{9}{199} a^{12} - \frac{72}{199} a^{11} + \frac{73}{199} a^{10} + \frac{49}{199} a^{9} + \frac{48}{199} a^{8} - \frac{88}{199} a^{7} - \frac{99}{199} a^{6} + \frac{1}{199} a^{5} - \frac{51}{199} a^{4} - \frac{2}{199} a^{3} - \frac{94}{199} a^{2} + \frac{48}{199} a + \frac{67}{199}$, $\frac{1}{3562263681863476958825918477957357} a^{19} + \frac{2776954352100813812667719626748}{3562263681863476958825918477957357} a^{18} + \frac{1722046138424658963048746430684276}{3562263681863476958825918477957357} a^{17} + \frac{1336497915926636602396196551426820}{3562263681863476958825918477957357} a^{16} - \frac{144774485849074322672012639975317}{3562263681863476958825918477957357} a^{15} + \frac{116152320369765662220546172791243}{3562263681863476958825918477957357} a^{14} - \frac{498011257803941659964813563402431}{3562263681863476958825918477957357} a^{13} - \frac{877994127876250145052252137199459}{3562263681863476958825918477957357} a^{12} - \frac{1064114242010632140251078243113868}{3562263681863476958825918477957357} a^{11} - \frac{1292682102203189616963200254675413}{3562263681863476958825918477957357} a^{10} + \frac{751378386969169237533569843231657}{3562263681863476958825918477957357} a^{9} + \frac{1088990937619347585813848576783101}{3562263681863476958825918477957357} a^{8} + \frac{553871387044300809217077921635673}{3562263681863476958825918477957357} a^{7} + \frac{209385210448642783394093662490960}{3562263681863476958825918477957357} a^{6} - \frac{1307659153467883295921833428801382}{3562263681863476958825918477957357} a^{5} - \frac{579101658212656038637486488697707}{3562263681863476958825918477957357} a^{4} - \frac{148412186665202875849070781704434}{3562263681863476958825918477957357} a^{3} - \frac{769959742257387167608901804812502}{3562263681863476958825918477957357} a^{2} - \frac{769370975736089782416487358192437}{3562263681863476958825918477957357} a - \frac{36459254843006447460251842149934}{3562263681863476958825918477957357}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15014513.7978 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5120 |
| The 50 conjugacy class representatives for t20n303 are not computed |
| Character table for t20n303 is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.8.70952789611.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | $20$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | $20$ | R | $20$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | $20$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{8}$ | $20$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 11 | Data not computed | ||||||
| 331 | Data not computed | ||||||