Normalized defining polynomial
\( x^{20} - 7 x^{19} + 21 x^{18} - 17 x^{17} - 105 x^{16} + 372 x^{15} - 387 x^{14} - 654 x^{13} + 2149 x^{12} - 1179 x^{11} - 2426 x^{10} + 3176 x^{9} + 2581 x^{8} + 452 x^{7} - 2075 x^{6} + 3150 x^{5} + 5979 x^{4} - 71 x^{3} - 833 x^{2} - 119 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-182567274194490055859030886811=-\,11^{16}\cdot 331^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.04$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 331$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{126245586568171315755459655649836109183} a^{19} - \frac{18389700637384181945036338433621044442}{126245586568171315755459655649836109183} a^{18} + \frac{24263133141364729072586052936419064294}{126245586568171315755459655649836109183} a^{17} - \frac{42422889809956232474167608057832889080}{126245586568171315755459655649836109183} a^{16} + \frac{60262126061683233961726584576957882812}{126245586568171315755459655649836109183} a^{15} - \frac{56230761763656736906563751095839217138}{126245586568171315755459655649836109183} a^{14} - \frac{49467519622089706009715856755287938626}{126245586568171315755459655649836109183} a^{13} + \frac{280312603038263152888703208707932862}{640840540955184343936343429694599539} a^{12} - \frac{26446161077486629245519264230090555728}{126245586568171315755459655649836109183} a^{11} + \frac{3321307454566991881555789994750611642}{126245586568171315755459655649836109183} a^{10} - \frac{50812213817669748940068204835724648180}{126245586568171315755459655649836109183} a^{9} + \frac{38287384509838606803525963387045463264}{126245586568171315755459655649836109183} a^{8} - \frac{24100255985647248227841898207526165110}{126245586568171315755459655649836109183} a^{7} - \frac{10492929448846445403002159550064100483}{126245586568171315755459655649836109183} a^{6} + \frac{12541490444960409025963858926630906228}{126245586568171315755459655649836109183} a^{5} - \frac{5439659665185021661700610362913777615}{126245586568171315755459655649836109183} a^{4} - \frac{15715604265943180935926324973391224664}{126245586568171315755459655649836109183} a^{3} + \frac{44261670051536718752606473415616210585}{126245586568171315755459655649836109183} a^{2} - \frac{53883409161238986284588795349590789928}{126245586568171315755459655649836109183} a + \frac{14369840718015097609127898510153323595}{126245586568171315755459655649836109183}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15014513.7978 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5120 |
| The 50 conjugacy class representatives for t20n303 are not computed |
| Character table for t20n303 is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.8.70952789611.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | $20$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | $20$ | R | $20$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | $20$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{8}$ | $20$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 11 | Data not computed | ||||||
| 331 | Data not computed | ||||||