Normalized defining polynomial
\( x^{20} - x^{19} - 13 x^{18} + 43 x^{17} + 42 x^{16} - 375 x^{15} + 370 x^{14} + 1230 x^{13} - 3006 x^{12} - 376 x^{11} + 8065 x^{10} - 6050 x^{9} - 9004 x^{8} + 13211 x^{7} + 3162 x^{6} - 11252 x^{5} + 79 x^{4} + 4257 x^{3} + 271 x^{2} - 456 x - 67 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-18079489015266793067734899712=-\,2^{10}\cdot 11^{16}\cdot 727^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.87$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 727$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{15618280623171620130557091847619} a^{19} - \frac{3244930949674940941505615342289}{15618280623171620130557091847619} a^{18} + \frac{835409944570474613433624674519}{15618280623171620130557091847619} a^{17} - \frac{6180446787981738975465280859889}{15618280623171620130557091847619} a^{16} - \frac{3073181857671879080883911589802}{15618280623171620130557091847619} a^{15} - \frac{5196105001186028670658920385722}{15618280623171620130557091847619} a^{14} + \frac{4602316194999206349784024764380}{15618280623171620130557091847619} a^{13} + \frac{880004024523020425795777046154}{15618280623171620130557091847619} a^{12} + \frac{7232986731776206568703985427087}{15618280623171620130557091847619} a^{11} - \frac{6613188462213950933681825866879}{15618280623171620130557091847619} a^{10} + \frac{6091233029902766067871481653046}{15618280623171620130557091847619} a^{9} - \frac{6164417196810795628470769794664}{15618280623171620130557091847619} a^{8} + \frac{3476856886649604368812950478661}{15618280623171620130557091847619} a^{7} + \frac{4682637900744795962554148220064}{15618280623171620130557091847619} a^{6} + \frac{3793447445370485603373255403109}{15618280623171620130557091847619} a^{5} + \frac{2625497105087782926832748950671}{15618280623171620130557091847619} a^{4} + \frac{165982323830091389003127817644}{15618280623171620130557091847619} a^{3} - \frac{1508818684735340212181685691507}{15618280623171620130557091847619} a^{2} + \frac{5377648090102135694686108683661}{15618280623171620130557091847619} a - \frac{1311469621327513325254448682302}{15618280623171620130557091847619}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4528638.55855 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 81920 |
| The 332 conjugacy class representatives for t20n747 are not computed |
| Character table for t20n747 is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.8.155838906487.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | $20$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | $20$ | $20$ | $20$ | $20$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.10.10.2 | $x^{10} - 5 x^{8} + 10 x^{6} - 2 x^{4} - 11 x^{2} + 39$ | $2$ | $5$ | $10$ | $C_2^4 : C_5$ | $[2, 2, 2, 2]^{5}$ | |
| 11 | Data not computed | ||||||
| 727 | Data not computed | ||||||