Normalized defining polynomial
\( x^{20} - 8 x^{19} + 36 x^{18} - 108 x^{17} + 230 x^{16} - 345 x^{15} + 302 x^{14} + 28 x^{13} - 639 x^{12} + 1314 x^{11} - 1508 x^{10} + 591 x^{9} + 1493 x^{8} - 2631 x^{7} + 771 x^{6} + 1236 x^{5} - 764 x^{4} - 72 x^{3} + 56 x^{2} + 17 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-16985196289500337453529206331=-\,11^{18}\cdot 1451^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.79$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 1451$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{2676213531961892187077} a^{19} + \frac{41437593161458033965}{2676213531961892187077} a^{18} + \frac{1336436116656326655059}{2676213531961892187077} a^{17} + \frac{195640686107178631947}{2676213531961892187077} a^{16} - \frac{635564733468076975462}{2676213531961892187077} a^{15} + \frac{292137902027132524275}{2676213531961892187077} a^{14} - \frac{1012642115855048841103}{2676213531961892187077} a^{13} - \frac{723422686081095640010}{2676213531961892187077} a^{12} - \frac{1298264027366438543477}{2676213531961892187077} a^{11} + \frac{1263014221658246167944}{2676213531961892187077} a^{10} + \frac{976005622521532499051}{2676213531961892187077} a^{9} + \frac{876246223212847731443}{2676213531961892187077} a^{8} + \frac{1220330113289663814319}{2676213531961892187077} a^{7} + \frac{805391655576797869471}{2676213531961892187077} a^{6} - \frac{1095407378443907765386}{2676213531961892187077} a^{5} - \frac{260823537727542342736}{2676213531961892187077} a^{4} - \frac{528850600574228017387}{2676213531961892187077} a^{3} - \frac{1075302075924099474566}{2676213531961892187077} a^{2} - \frac{775899227268586393853}{2676213531961892187077} a + \frac{909532883930936150064}{2676213531961892187077}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4686457.89326 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 10240 |
| The 136 conjugacy class representatives for t20n432 are not computed |
| Character table for t20n432 is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.10.3421382099641.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }{,}\,{\href{/LocalNumberField/2.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | $20$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 11 | Data not computed | ||||||
| 1451 | Data not computed | ||||||