Properties

Label 20.10.1640505640...2992.2
Degree $20$
Signature $[10, 5]$
Discriminant $-\,2^{20}\cdot 11^{16}\cdot 23^{7}$
Root discriminant $40.81$
Ramified primes $2, 11, 23$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T749

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -28, -45, 398, -95, -1056, 855, 540, -1324, 848, -44, -1322, 565, 272, -86, 86, -38, 6, -5, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 2*x^19 - 5*x^18 + 6*x^17 - 38*x^16 + 86*x^15 - 86*x^14 + 272*x^13 + 565*x^12 - 1322*x^11 - 44*x^10 + 848*x^9 - 1324*x^8 + 540*x^7 + 855*x^6 - 1056*x^5 - 95*x^4 + 398*x^3 - 45*x^2 - 28*x + 1)
 
gp: K = bnfinit(x^20 - 2*x^19 - 5*x^18 + 6*x^17 - 38*x^16 + 86*x^15 - 86*x^14 + 272*x^13 + 565*x^12 - 1322*x^11 - 44*x^10 + 848*x^9 - 1324*x^8 + 540*x^7 + 855*x^6 - 1056*x^5 - 95*x^4 + 398*x^3 - 45*x^2 - 28*x + 1, 1)
 

Normalized defining polynomial

\( x^{20} - 2 x^{19} - 5 x^{18} + 6 x^{17} - 38 x^{16} + 86 x^{15} - 86 x^{14} + 272 x^{13} + 565 x^{12} - 1322 x^{11} - 44 x^{10} + 848 x^{9} - 1324 x^{8} + 540 x^{7} + 855 x^{6} - 1056 x^{5} - 95 x^{4} + 398 x^{3} - 45 x^{2} - 28 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[10, 5]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-164050564045619941441358756052992=-\,2^{20}\cdot 11^{16}\cdot 23^{7}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $40.81$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 11, 23$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{486068112770011584574908656443} a^{19} - \frac{241405372487867740243520126244}{486068112770011584574908656443} a^{18} - \frac{182042648257795931109695813851}{486068112770011584574908656443} a^{17} + \frac{183044622359557869129201797217}{486068112770011584574908656443} a^{16} + \frac{22935620752198259772497210011}{486068112770011584574908656443} a^{15} - \frac{180199241297178896410909385670}{486068112770011584574908656443} a^{14} - \frac{5502378353540981958688204052}{486068112770011584574908656443} a^{13} + \frac{160525606813152482452705225439}{486068112770011584574908656443} a^{12} - \frac{151067704153935211198410822802}{486068112770011584574908656443} a^{11} - \frac{163195134092869800620542525377}{486068112770011584574908656443} a^{10} - \frac{101485234656728541187005300798}{486068112770011584574908656443} a^{9} + \frac{179248739308476599235428263307}{486068112770011584574908656443} a^{8} - \frac{115527009450763331564447750194}{486068112770011584574908656443} a^{7} - \frac{201473873049046996347078512756}{486068112770011584574908656443} a^{6} - \frac{25934979796962788853804849707}{486068112770011584574908656443} a^{5} - \frac{121793834533223787238660113128}{486068112770011584574908656443} a^{4} - \frac{237239816028942173479036962213}{486068112770011584574908656443} a^{3} + \frac{168781007020484039439198195902}{486068112770011584574908656443} a^{2} - \frac{1574104944069272929721456511}{11303909599302594990114154801} a + \frac{5179572947786203092097021750}{486068112770011584574908656443}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $14$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 628462092.691 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T749:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 81920
The 332 conjugacy class representatives for t20n749 are not computed
Character table for t20n749 is not computed

Intermediate fields

\(\Q(\zeta_{11})^+\), 10.10.116117348402176.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ R ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}$ R ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{10}$ ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$11$11.5.4.4$x^{5} - 11$$5$$1$$4$$C_5$$[\ ]_{5}$
11.5.4.4$x^{5} - 11$$5$$1$$4$$C_5$$[\ ]_{5}$
11.10.8.5$x^{10} - 2321 x^{5} + 2033647$$5$$2$$8$$C_{10}$$[\ ]_{5}^{2}$
$23$$\Q_{23}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{23}$$x + 2$$1$$1$$0$Trivial$[\ ]$
23.2.1.2$x^{2} + 46$$2$$1$$1$$C_2$$[\ ]_{2}$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.4.3.2$x^{4} - 23$$4$$1$$3$$D_{4}$$[\ ]_{4}^{2}$
23.4.3.1$x^{4} + 46$$4$$1$$3$$D_{4}$$[\ ]_{4}^{2}$
23.4.0.1$x^{4} - x + 11$$1$$4$$0$$C_4$$[\ ]^{4}$