Properties

Label 20.10.1640505640...2992.1
Degree $20$
Signature $[10, 5]$
Discriminant $-\,2^{20}\cdot 11^{16}\cdot 23^{7}$
Root discriminant $40.81$
Ramified primes $2, 11, 23$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T749

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 20, -299, 880, 62, -3346, 3952, 1440, -7205, 5112, 1309, -4178, 3597, -1468, -87, 372, -188, 44, 12, -8, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 8*x^19 + 12*x^18 + 44*x^17 - 188*x^16 + 372*x^15 - 87*x^14 - 1468*x^13 + 3597*x^12 - 4178*x^11 + 1309*x^10 + 5112*x^9 - 7205*x^8 + 1440*x^7 + 3952*x^6 - 3346*x^5 + 62*x^4 + 880*x^3 - 299*x^2 + 20*x + 1)
 
gp: K = bnfinit(x^20 - 8*x^19 + 12*x^18 + 44*x^17 - 188*x^16 + 372*x^15 - 87*x^14 - 1468*x^13 + 3597*x^12 - 4178*x^11 + 1309*x^10 + 5112*x^9 - 7205*x^8 + 1440*x^7 + 3952*x^6 - 3346*x^5 + 62*x^4 + 880*x^3 - 299*x^2 + 20*x + 1, 1)
 

Normalized defining polynomial

\( x^{20} - 8 x^{19} + 12 x^{18} + 44 x^{17} - 188 x^{16} + 372 x^{15} - 87 x^{14} - 1468 x^{13} + 3597 x^{12} - 4178 x^{11} + 1309 x^{10} + 5112 x^{9} - 7205 x^{8} + 1440 x^{7} + 3952 x^{6} - 3346 x^{5} + 62 x^{4} + 880 x^{3} - 299 x^{2} + 20 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[10, 5]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-164050564045619941441358756052992=-\,2^{20}\cdot 11^{16}\cdot 23^{7}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $40.81$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 11, 23$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{12} - \frac{1}{3} a^{11} - \frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{16} - \frac{1}{3} a^{13} - \frac{1}{3} a^{12} - \frac{1}{3} a^{11} + \frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{3} a^{17} - \frac{1}{3} a^{14} - \frac{1}{3} a^{13} - \frac{1}{3} a^{12} + \frac{1}{3} a^{11} + \frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2}$, $\frac{1}{69} a^{18} - \frac{2}{23} a^{17} + \frac{1}{69} a^{16} - \frac{2}{23} a^{15} + \frac{8}{69} a^{14} - \frac{32}{69} a^{13} - \frac{28}{69} a^{12} + \frac{8}{69} a^{11} - \frac{26}{69} a^{10} + \frac{10}{69} a^{9} + \frac{5}{23} a^{8} + \frac{32}{69} a^{6} + \frac{3}{23} a^{5} + \frac{7}{23} a^{3} + \frac{4}{23} a^{2} - \frac{6}{23} a - \frac{1}{69}$, $\frac{1}{49946109650850675770520496971} a^{19} - \frac{63393542242381954642821058}{49946109650850675770520496971} a^{18} - \frac{2327687264380927656785213653}{49946109650850675770520496971} a^{17} + \frac{2316181772055340483393320559}{16648703216950225256840165657} a^{16} - \frac{6515860180749074262276602549}{49946109650850675770520496971} a^{15} + \frac{16941486235997032499064781807}{49946109650850675770520496971} a^{14} + \frac{12118796353843564632601701770}{49946109650850675770520496971} a^{13} - \frac{12732876872080484506971812140}{49946109650850675770520496971} a^{12} - \frac{6974113882091542179963545863}{16648703216950225256840165657} a^{11} + \frac{148520765034136464849858849}{723856661606531532906094159} a^{10} - \frac{6893513326455667570385043591}{16648703216950225256840165657} a^{9} + \frac{541490031715825820901631118}{49946109650850675770520496971} a^{8} - \frac{24300527571993206425280413142}{49946109650850675770520496971} a^{7} - \frac{2164304023671088806703423530}{16648703216950225256840165657} a^{6} + \frac{3607302100005433505810607508}{49946109650850675770520496971} a^{5} + \frac{14927445494893047593254568458}{49946109650850675770520496971} a^{4} - \frac{24269143478174954303803690724}{49946109650850675770520496971} a^{3} + \frac{3451305062276831867880738469}{49946109650850675770520496971} a^{2} - \frac{7000676141830583901552046508}{16648703216950225256840165657} a + \frac{189598628777347079024200607}{49946109650850675770520496971}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $14$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 594579570.526 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T749:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 81920
The 332 conjugacy class representatives for t20n749 are not computed
Character table for t20n749 is not computed

Intermediate fields

\(\Q(\zeta_{11})^+\), 10.10.116117348402176.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ R ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}$ R ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$11$11.5.4.4$x^{5} - 11$$5$$1$$4$$C_5$$[\ ]_{5}$
11.5.4.4$x^{5} - 11$$5$$1$$4$$C_5$$[\ ]_{5}$
11.10.8.5$x^{10} - 2321 x^{5} + 2033647$$5$$2$$8$$C_{10}$$[\ ]_{5}^{2}$
$23$$\Q_{23}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{23}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{23}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{23}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{23}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{23}$$x + 2$$1$$1$$0$Trivial$[\ ]$
23.2.1.2$x^{2} + 46$$2$$1$$1$$C_2$$[\ ]_{2}$
23.4.3.2$x^{4} - 23$$4$$1$$3$$D_{4}$$[\ ]_{4}^{2}$
23.4.3.1$x^{4} + 46$$4$$1$$3$$D_{4}$$[\ ]_{4}^{2}$
23.4.0.1$x^{4} - x + 11$$1$$4$$0$$C_4$$[\ ]^{4}$