Normalized defining polynomial
\( x^{20} - 9 x^{19} + 24 x^{18} + 54 x^{17} - 631 x^{16} + 2452 x^{15} - 5691 x^{14} + 8318 x^{13} - 6817 x^{12} - 504 x^{11} + 11216 x^{10} - 22964 x^{9} + 34562 x^{8} - 23706 x^{7} - 24944 x^{6} + 53552 x^{5} - 20774 x^{4} - 13526 x^{3} + 11231 x^{2} - 1890 x + 45 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-163023866649059818618082021484375=-\,3^{8}\cdot 5^{10}\cdot 239^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $40.80$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 239$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} - \frac{1}{5} a^{11} - \frac{2}{5} a^{10} + \frac{2}{5} a^{9} - \frac{2}{5} a^{8} - \frac{1}{5} a^{7} - \frac{1}{5} a^{6} + \frac{2}{5} a^{4} + \frac{2}{5} a^{3} - \frac{1}{5} a^{2}$, $\frac{1}{5} a^{13} + \frac{2}{5} a^{11} + \frac{2}{5} a^{8} - \frac{2}{5} a^{7} - \frac{1}{5} a^{6} + \frac{2}{5} a^{5} - \frac{1}{5} a^{4} + \frac{1}{5} a^{3} - \frac{1}{5} a^{2}$, $\frac{1}{5} a^{14} + \frac{2}{5} a^{11} - \frac{1}{5} a^{10} - \frac{2}{5} a^{9} + \frac{2}{5} a^{8} + \frac{1}{5} a^{7} - \frac{1}{5} a^{6} - \frac{1}{5} a^{5} + \frac{2}{5} a^{4} + \frac{2}{5} a^{2}$, $\frac{1}{15} a^{15} - \frac{1}{15} a^{14} + \frac{1}{15} a^{12} - \frac{7}{15} a^{11} + \frac{2}{5} a^{10} + \frac{7}{15} a^{9} - \frac{4}{15} a^{8} + \frac{4}{15} a^{7} + \frac{2}{5} a^{6} - \frac{7}{15} a^{5} + \frac{1}{15} a^{4} - \frac{1}{15} a^{2} - \frac{1}{3} a$, $\frac{1}{15} a^{16} - \frac{1}{15} a^{14} + \frac{1}{15} a^{13} - \frac{7}{15} a^{11} + \frac{1}{15} a^{10} + \frac{1}{5} a^{8} + \frac{4}{15} a^{7} - \frac{7}{15} a^{6} - \frac{2}{5} a^{5} - \frac{2}{15} a^{4} - \frac{4}{15} a^{3} + \frac{1}{5} a^{2} - \frac{1}{3} a$, $\frac{1}{15} a^{17} + \frac{1}{5} a^{11} - \frac{2}{5} a^{10} + \frac{7}{15} a^{9} + \frac{1}{5} a^{8} + \frac{2}{5} a^{7} - \frac{2}{5} a^{6} + \frac{2}{5} a^{5} - \frac{2}{5} a^{4} + \frac{1}{5} a^{2} - \frac{1}{3} a$, $\frac{1}{165} a^{18} - \frac{4}{165} a^{17} + \frac{1}{33} a^{16} - \frac{2}{165} a^{15} - \frac{3}{55} a^{14} - \frac{4}{165} a^{13} - \frac{1}{15} a^{12} - \frac{19}{55} a^{11} - \frac{17}{55} a^{10} + \frac{3}{55} a^{9} + \frac{56}{165} a^{8} + \frac{17}{55} a^{7} + \frac{5}{33} a^{6} + \frac{32}{165} a^{5} - \frac{5}{11} a^{4} - \frac{4}{33} a^{3} + \frac{13}{55} a^{2} + \frac{16}{33} a - \frac{3}{11}$, $\frac{1}{31902300414086577430972982955} a^{19} - \frac{27794049542685886584125426}{31902300414086577430972982955} a^{18} + \frac{176266344681595667788120369}{6380460082817315486194596591} a^{17} + \frac{298386507104726292997887466}{31902300414086577430972982955} a^{16} + \frac{599644774760596634892176747}{31902300414086577430972982955} a^{15} + \frac{125163715815705114206437563}{10634100138028859143657660985} a^{14} + \frac{7001009292075133153668221}{95230747504736052032755173} a^{13} - \frac{1547435032416635778552730387}{31902300414086577430972982955} a^{12} + \frac{519002917046391984103660003}{31902300414086577430972982955} a^{11} + \frac{386695941909125263811366462}{31902300414086577430972982955} a^{10} + \frac{15578672294657325282765198298}{31902300414086577430972982955} a^{9} + \frac{1339961348326743510804554419}{31902300414086577430972982955} a^{8} + \frac{3776189424935932817392539888}{10634100138028859143657660985} a^{7} - \frac{1499755179422358072419364656}{6380460082817315486194596591} a^{6} - \frac{13935967290832627370062613084}{31902300414086577430972982955} a^{5} - \frac{3821851317656747877877667638}{10634100138028859143657660985} a^{4} - \frac{200387120959065308377036862}{966736376184441740332514635} a^{3} - \frac{6010528016378288507908643041}{31902300414086577430972982955} a^{2} + \frac{2834155112173782933599794201}{6380460082817315486194596591} a - \frac{216574667185691742899865126}{2126820027605771828731532197}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1393819795.17 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$D_4\times D_5$ (as 20T21):
| A solvable group of order 80 |
| The 20 conjugacy class representatives for $D_4\times D_5$ |
| Character table for $D_4\times D_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.2.5975.1, 5.5.12852225.1, 10.10.825898437253125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | R | $20$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{10}$ | $20$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ | $20$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 239 | Data not computed | ||||||