Normalized defining polynomial
\( x^{20} - 6 x^{19} + 12 x^{18} - 6 x^{17} - 29 x^{16} + 148 x^{15} - 356 x^{14} + 263 x^{13} + 592 x^{12} - 2150 x^{11} + 2486 x^{10} + 3283 x^{9} - 10683 x^{8} + 375 x^{7} + 16903 x^{6} - 7773 x^{5} - 9342 x^{4} + 7323 x^{3} - 801 x^{2} - 320 x + 55 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1467214799841538367562738193359375=-\,3^{10}\cdot 5^{10}\cdot 239^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $45.53$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 239$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{237} a^{18} + \frac{26}{237} a^{17} - \frac{97}{237} a^{16} - \frac{28}{79} a^{15} - \frac{26}{79} a^{14} - \frac{92}{237} a^{13} - \frac{18}{79} a^{12} + \frac{8}{79} a^{11} + \frac{34}{237} a^{10} + \frac{18}{79} a^{9} - \frac{17}{79} a^{8} - \frac{104}{237} a^{7} + \frac{89}{237} a^{6} - \frac{112}{237} a^{5} - \frac{41}{237} a^{4} + \frac{85}{237} a^{3} - \frac{12}{79} a^{2} - \frac{107}{237} a + \frac{26}{237}$, $\frac{1}{263653422622844769133580674212225} a^{19} - \frac{5783464606582576577358891622}{52730684524568953826716134842445} a^{18} - \frac{42803217947635948291425243014566}{87884474207614923044526891404075} a^{17} - \frac{10806970100350171529553358327139}{263653422622844769133580674212225} a^{16} - \frac{24193133494736169461264861881616}{87884474207614923044526891404075} a^{15} - \frac{7093821633223435743636767878297}{52730684524568953826716134842445} a^{14} - \frac{124152088663508981683200553976941}{263653422622844769133580674212225} a^{13} - \frac{41225372397143078871987006083916}{87884474207614923044526891404075} a^{12} - \frac{11269350211886155176746939989616}{263653422622844769133580674212225} a^{11} + \frac{49189450175817344080762676390864}{263653422622844769133580674212225} a^{10} - \frac{8013073497615851293500351781823}{17576894841522984608905378280815} a^{9} + \frac{93217867896075710781573803074063}{263653422622844769133580674212225} a^{8} - \frac{22303438602536849107810677848632}{52730684524568953826716134842445} a^{7} - \frac{2508538124628783192289038481549}{17576894841522984608905378280815} a^{6} - \frac{63730766527718612668145753727157}{263653422622844769133580674212225} a^{5} - \frac{8068638208276384646292799066028}{17576894841522984608905378280815} a^{4} + \frac{126669714626710542864926942084288}{263653422622844769133580674212225} a^{3} - \frac{2977068346002459932650651999079}{263653422622844769133580674212225} a^{2} - \frac{775222943875639611355558250108}{1818299466364446683679866718705} a + \frac{1071141799894082101842652037014}{4793698593142632166065103167495}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3791542474.65 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20480 |
| The 152 conjugacy class representatives for t20n525 are not computed |
| Character table for t20n525 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.12852225.1, 10.10.825898437253125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | R | $20$ | ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | $20$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ | $20$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 239 | Data not computed | ||||||