Normalized defining polynomial
\( x^{20} - 2 x^{19} - 11 x^{18} + 16 x^{17} + 53 x^{16} + 30 x^{15} - 289 x^{14} - 372 x^{13} + 897 x^{12} + 962 x^{11} - 717 x^{10} - 4904 x^{9} + 1807 x^{8} + 6930 x^{7} - 3827 x^{6} - 2724 x^{5} + 2626 x^{4} - 128 x^{3} - 532 x^{2} + 128 x - 8 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1337308814535692506945873248256=-\,2^{44}\cdot 31^{5}\cdot 227^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $32.09$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 31, 227$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{4}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{5}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{6}$, $\frac{1}{8} a^{15} - \frac{1}{8} a^{13} - \frac{1}{8} a^{7} + \frac{1}{8} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{16} - \frac{1}{8} a^{14} - \frac{1}{8} a^{8} + \frac{1}{8} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{16} a^{17} - \frac{1}{16} a^{16} - \frac{1}{16} a^{15} - \frac{1}{16} a^{14} - \frac{1}{8} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{16} a^{9} + \frac{1}{16} a^{8} - \frac{3}{16} a^{7} - \frac{3}{16} a^{6} + \frac{1}{4} a^{5} - \frac{1}{8} a^{4} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2}$, $\frac{1}{16} a^{18} + \frac{1}{16} a^{14} - \frac{1}{8} a^{12} + \frac{3}{16} a^{10} - \frac{1}{4} a^{8} - \frac{1}{16} a^{6} + \frac{3}{8} a^{4} + \frac{1}{4} a^{2} - \frac{1}{2}$, $\frac{1}{130654212359852277475685536} a^{19} - \frac{1393954910343892977110137}{130654212359852277475685536} a^{18} + \frac{1348240313452701606382035}{65327106179926138737842768} a^{17} - \frac{1235632114889461381438481}{65327106179926138737842768} a^{16} - \frac{1576183807362432769095581}{130654212359852277475685536} a^{15} + \frac{2051255046744991614754593}{130654212359852277475685536} a^{14} + \frac{7732313037101230748724877}{65327106179926138737842768} a^{13} - \frac{6625347828251733270228981}{65327106179926138737842768} a^{12} + \frac{19841434688170573055859931}{130654212359852277475685536} a^{11} + \frac{10442022103694158314187301}{130654212359852277475685536} a^{10} - \frac{198478541339876370330661}{65327106179926138737842768} a^{9} + \frac{1399372316332972517546083}{65327106179926138737842768} a^{8} - \frac{9404910240814482188088627}{130654212359852277475685536} a^{7} - \frac{17603687284113614406271297}{130654212359852277475685536} a^{6} + \frac{4603300129856438561170633}{65327106179926138737842768} a^{5} + \frac{9022884636653027581218255}{65327106179926138737842768} a^{4} + \frac{15152095367116083306791557}{32663553089963069368921384} a^{3} - \frac{11744790405833882380797087}{32663553089963069368921384} a^{2} - \frac{5256341802116029294937993}{16331776544981534684460692} a - \frac{5240932229971736135731717}{16331776544981534684460692}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 243482042.52 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 14745600 |
| The 384 conjugacy class representatives for t20n1037 are not computed |
| Character table for t20n1037 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 10.10.207699287474176.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | $16{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }$ | R | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | $16{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ | $16{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.11.1 | $x^{6} + 14$ | $6$ | $1$ | $11$ | $D_{6}$ | $[3]_{3}^{2}$ |
| 2.6.11.1 | $x^{6} + 14$ | $6$ | $1$ | $11$ | $D_{6}$ | $[3]_{3}^{2}$ | |
| 2.8.22.7 | $x^{8} + 2 x^{4} + 16 x + 4$ | $4$ | $2$ | $22$ | $C_4\times C_2$ | $[3, 4]^{2}$ | |
| 31 | Data not computed | ||||||
| 227 | Data not computed | ||||||