Normalized defining polynomial
\( x^{20} - 13 x^{18} + 11 x^{16} + 451 x^{14} - 2685 x^{12} + 5672 x^{10} - 3972 x^{8} + 1199 x^{6} - 3518 x^{4} + 1891 x^{2} - 61 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-12599457394661531371809189999616=-\,2^{10}\cdot 61^{7}\cdot 397^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $35.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 61, 397$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{10} + \frac{1}{4} a^{8} + \frac{1}{4} a^{6} - \frac{1}{4} a^{2} - \frac{1}{4}$, $\frac{1}{8} a^{13} - \frac{1}{8} a^{12} - \frac{1}{8} a^{11} + \frac{1}{8} a^{10} + \frac{1}{8} a^{9} - \frac{1}{8} a^{8} + \frac{1}{8} a^{7} - \frac{1}{8} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{8} a^{3} + \frac{1}{8} a^{2} + \frac{3}{8} a - \frac{3}{8}$, $\frac{1}{16} a^{14} - \frac{1}{8} a^{12} + \frac{1}{8} a^{10} - \frac{1}{2} a^{8} + \frac{3}{16} a^{6} + \frac{3}{16} a^{4} - \frac{1}{4} a^{2} + \frac{5}{16}$, $\frac{1}{32} a^{15} - \frac{1}{32} a^{14} - \frac{1}{16} a^{13} + \frac{1}{16} a^{12} + \frac{1}{16} a^{11} - \frac{1}{16} a^{10} + \frac{1}{4} a^{9} - \frac{1}{4} a^{8} + \frac{3}{32} a^{7} - \frac{3}{32} a^{6} + \frac{3}{32} a^{5} - \frac{3}{32} a^{4} + \frac{3}{8} a^{3} - \frac{3}{8} a^{2} - \frac{11}{32} a + \frac{11}{32}$, $\frac{1}{64} a^{16} + \frac{1}{64} a^{14} - \frac{1}{16} a^{12} - \frac{9}{32} a^{10} - \frac{5}{64} a^{8} - \frac{5}{16} a^{6} - \frac{11}{64} a^{4} + \frac{25}{64} a^{2} + \frac{31}{64}$, $\frac{1}{128} a^{17} - \frac{1}{128} a^{16} + \frac{1}{128} a^{15} - \frac{1}{128} a^{14} - \frac{1}{32} a^{13} + \frac{1}{32} a^{12} - \frac{9}{64} a^{11} + \frac{9}{64} a^{10} - \frac{5}{128} a^{9} + \frac{5}{128} a^{8} - \frac{5}{32} a^{7} + \frac{5}{32} a^{6} - \frac{11}{128} a^{5} + \frac{11}{128} a^{4} - \frac{39}{128} a^{3} + \frac{39}{128} a^{2} - \frac{33}{128} a + \frac{33}{128}$, $\frac{1}{1543413112913152} a^{18} + \frac{1122278759379}{192926639114144} a^{16} - \frac{26307658764861}{1543413112913152} a^{14} - \frac{86865553265991}{771706556456576} a^{12} + \frac{29726810436989}{1543413112913152} a^{10} + \frac{270507741334969}{1543413112913152} a^{8} + \frac{418362533280505}{1543413112913152} a^{6} + \frac{58792282378555}{385853278228288} a^{4} + \frac{210098112041839}{771706556456576} a^{2} - \frac{537181051037127}{1543413112913152}$, $\frac{1}{3086826225826304} a^{19} - \frac{1}{3086826225826304} a^{18} + \frac{1122278759379}{385853278228288} a^{17} - \frac{1122278759379}{385853278228288} a^{16} - \frac{26307658764861}{3086826225826304} a^{15} + \frac{26307658764861}{3086826225826304} a^{14} - \frac{86865553265991}{1543413112913152} a^{13} + \frac{86865553265991}{1543413112913152} a^{12} + \frac{29726810436989}{3086826225826304} a^{11} - \frac{29726810436989}{3086826225826304} a^{10} + \frac{270507741334969}{3086826225826304} a^{9} - \frac{270507741334969}{3086826225826304} a^{8} + \frac{418362533280505}{3086826225826304} a^{7} - \frac{418362533280505}{3086826225826304} a^{6} + \frac{58792282378555}{771706556456576} a^{5} - \frac{58792282378555}{771706556456576} a^{4} + \frac{210098112041839}{1543413112913152} a^{3} - \frac{210098112041839}{1543413112913152} a^{2} - \frac{537181051037127}{3086826225826304} a + \frac{537181051037127}{3086826225826304}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 179956264.456 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1966080 |
| The 265 conjugacy class representatives for t20n991 are not computed |
| Character table for t20n991 is not computed |
Intermediate fields
| 5.5.24217.1, 10.6.14202376626313.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }{,}\,{\href{/LocalNumberField/3.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}$ | $16{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | $16{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | $16{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | $16{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.10.10.13 | $x^{10} - 15 x^{8} + 26 x^{6} - 22 x^{4} + 37 x^{2} - 59$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2, 2]^{5}$ | |
| 61 | Data not computed | ||||||
| 397 | Data not computed | ||||||