Normalized defining polynomial
\( x^{20} - 40 x^{18} - 30 x^{17} + 580 x^{16} + 888 x^{15} - 3375 x^{14} - 8190 x^{13} + 3820 x^{12} + 24330 x^{11} + 15884 x^{10} - 13500 x^{9} - 24005 x^{8} - 22560 x^{7} - 14565 x^{6} - 2388 x^{5} + 250 x^{4} + 930 x^{3} + 860 x^{2} - 60 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1215000000000000000000000000000000=-\,2^{30}\cdot 3^{5}\cdot 5^{31}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $45.11$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{5} a^{10} - \frac{1}{5} a^{5} - \frac{1}{5}$, $\frac{1}{5} a^{11} - \frac{1}{5} a^{6} - \frac{1}{5} a$, $\frac{1}{5} a^{12} - \frac{1}{5} a^{7} - \frac{1}{5} a^{2}$, $\frac{1}{75} a^{13} + \frac{2}{25} a^{12} + \frac{2}{75} a^{11} - \frac{2}{75} a^{10} + \frac{2}{15} a^{9} + \frac{19}{75} a^{8} + \frac{8}{25} a^{7} - \frac{9}{25} a^{6} + \frac{32}{75} a^{5} - \frac{2}{5} a^{4} - \frac{26}{75} a^{3} + \frac{14}{75} a^{2} - \frac{7}{75} a + \frac{17}{75}$, $\frac{1}{75} a^{14} - \frac{4}{75} a^{12} + \frac{1}{75} a^{11} + \frac{7}{75} a^{10} + \frac{34}{75} a^{9} - \frac{1}{5} a^{8} + \frac{8}{25} a^{7} + \frac{29}{75} a^{6} + \frac{6}{25} a^{5} + \frac{4}{75} a^{4} + \frac{4}{15} a^{3} + \frac{29}{75} a^{2} - \frac{31}{75} a - \frac{4}{25}$, $\frac{1}{75} a^{15} - \frac{1}{15} a^{12} - \frac{4}{75} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{15} a^{7} + \frac{4}{25} a^{5} - \frac{1}{3} a^{4} - \frac{4}{15} a^{2} - \frac{1}{3} a + \frac{23}{75}$, $\frac{1}{75} a^{16} + \frac{2}{25} a^{11} + \frac{1}{3} a^{8} + \frac{9}{25} a^{6} - \frac{4}{25} a + \frac{1}{3}$, $\frac{1}{75} a^{17} + \frac{2}{25} a^{12} + \frac{1}{3} a^{9} + \frac{9}{25} a^{7} - \frac{4}{25} a^{2} + \frac{1}{3} a$, $\frac{1}{225} a^{18} + \frac{1}{225} a^{16} - \frac{2}{75} a^{12} + \frac{1}{25} a^{11} - \frac{8}{225} a^{10} + \frac{1}{15} a^{9} + \frac{13}{225} a^{8} - \frac{8}{75} a^{7} - \frac{17}{75} a^{6} + \frac{26}{75} a^{5} - \frac{1}{5} a^{4} - \frac{9}{25} a^{3} + \frac{61}{225} a^{2} + \frac{2}{5} a - \frac{32}{225}$, $\frac{1}{158242743075077324066925} a^{19} - \frac{15736094649885137609}{52747581025025774688975} a^{18} - \frac{510935037826771922987}{158242743075077324066925} a^{17} + \frac{2351816645783305346}{17582527008341924896325} a^{16} - \frac{58714140032167715888}{17582527008341924896325} a^{15} + \frac{8589475098292490983}{10549516205005154937795} a^{14} - \frac{2798148735455914}{1614310054323665637} a^{13} + \frac{2207181086494959314548}{52747581025025774688975} a^{12} + \frac{12070921508433066896467}{158242743075077324066925} a^{11} - \frac{1129389165126030804706}{52747581025025774688975} a^{10} - \frac{36702672850574477300927}{158242743075077324066925} a^{9} + \frac{17182544615927169423538}{52747581025025774688975} a^{8} - \frac{268485351818777330105}{2109903241001030987559} a^{7} - \frac{780558921220471194308}{3516505401668384979265} a^{6} - \frac{3424893408151823345612}{17582527008341924896325} a^{5} + \frac{11216751749996249854403}{52747581025025774688975} a^{4} + \frac{55470094364253339821242}{158242743075077324066925} a^{3} + \frac{17034838409120806607156}{52747581025025774688975} a^{2} - \frac{31901792214760175794406}{158242743075077324066925} a + \frac{1205009961965628893844}{3516505401668384979265}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4882656633.8 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times D_5\wr C_2$ (as 20T92):
| A solvable group of order 400 |
| The 28 conjugacy class representatives for $C_2\times D_5\wr C_2$ |
| Character table for $C_2\times D_5\wr C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{10}) \), 4.2.24000.1, 10.6.9000000000000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5 | Data not computed | ||||||