Normalized defining polynomial
\( x^{20} - 10 x^{19} + 25 x^{18} + 60 x^{17} - 500 x^{16} + 1348 x^{15} - 2250 x^{14} + 3380 x^{13} - 2795 x^{12} - 8710 x^{11} + 31089 x^{10} - 37080 x^{9} + 7320 x^{8} + 32500 x^{7} - 45840 x^{6} + 31812 x^{5} - 13315 x^{4} + 3470 x^{3} - 565 x^{2} + 60 x - 4 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1215000000000000000000000000000000=-\,2^{30}\cdot 3^{5}\cdot 5^{31}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $45.11$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{6} + \frac{1}{4} a^{5} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{4} a^{7} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{4} a^{13} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{8} a^{14} - \frac{1}{8} a^{13} - \frac{1}{8} a^{11} - \frac{1}{8} a^{9} + \frac{1}{8} a^{7} - \frac{1}{4} a^{6} - \frac{1}{8} a^{5} + \frac{1}{4} a^{4} - \frac{1}{8} a^{3} - \frac{3}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{8} a^{15} - \frac{1}{8} a^{13} - \frac{1}{8} a^{12} - \frac{1}{8} a^{11} - \frac{1}{8} a^{10} - \frac{1}{8} a^{9} + \frac{1}{8} a^{8} - \frac{1}{8} a^{7} + \frac{1}{8} a^{6} - \frac{3}{8} a^{5} - \frac{3}{8} a^{4} + \frac{3}{8} a^{2} - \frac{1}{4} a$, $\frac{1}{2208} a^{16} - \frac{1}{276} a^{15} - \frac{37}{1104} a^{14} + \frac{53}{1104} a^{13} + \frac{229}{2208} a^{12} + \frac{49}{552} a^{11} + \frac{15}{736} a^{10} - \frac{33}{368} a^{9} - \frac{467}{2208} a^{8} - \frac{17}{184} a^{7} - \frac{383}{2208} a^{6} - \frac{175}{368} a^{5} + \frac{27}{184} a^{4} - \frac{55}{138} a^{3} + \frac{141}{736} a^{2} - \frac{67}{552} a - \frac{1}{552}$, $\frac{1}{2208} a^{17} - \frac{1}{16} a^{15} + \frac{11}{368} a^{14} - \frac{9}{736} a^{13} - \frac{15}{184} a^{12} - \frac{43}{2208} a^{11} + \frac{27}{368} a^{10} - \frac{395}{2208} a^{9} + \frac{119}{552} a^{8} - \frac{359}{2208} a^{7} + \frac{151}{1104} a^{6} - \frac{75}{184} a^{5} + \frac{19}{69} a^{4} - \frac{545}{2208} a^{3} - \frac{187}{552} a^{2} + \frac{51}{184} a + \frac{67}{138}$, $\frac{1}{98551872} a^{18} - \frac{1}{10950208} a^{17} - \frac{3733}{98551872} a^{16} + \frac{7517}{24637968} a^{15} - \frac{3650479}{98551872} a^{14} + \frac{388481}{98551872} a^{13} - \frac{122509}{1145952} a^{12} + \frac{10259201}{98551872} a^{11} + \frac{1811881}{24637968} a^{10} + \frac{15003257}{98551872} a^{9} + \frac{2130445}{16425312} a^{8} - \frac{9550711}{98551872} a^{7} + \frac{14248115}{98551872} a^{6} + \frac{2430205}{49275936} a^{5} + \frac{47130307}{98551872} a^{4} + \frac{13123559}{32850624} a^{3} - \frac{11094383}{32850624} a^{2} + \frac{531877}{12318984} a - \frac{4943909}{24637968}$, $\frac{1}{98551872} a^{19} - \frac{1907}{49275936} a^{17} - \frac{3529}{98551872} a^{16} - \frac{3379867}{98551872} a^{15} + \frac{2245561}{49275936} a^{14} + \frac{5279539}{98551872} a^{13} - \frac{10648861}{98551872} a^{12} - \frac{11290523}{98551872} a^{11} + \frac{6317069}{98551872} a^{10} - \frac{4111603}{32850624} a^{9} - \frac{411547}{2291904} a^{8} - \frac{2528341}{24637968} a^{7} - \frac{14734363}{98551872} a^{6} - \frac{19996859}{98551872} a^{5} - \frac{14155}{47748} a^{4} - \frac{1508233}{4106328} a^{3} - \frac{36594661}{98551872} a^{2} - \frac{334309}{1071216} a - \frac{837581}{2737552}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15994113224.0 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times D_5\wr C_2$ (as 20T92):
| A solvable group of order 400 |
| The 28 conjugacy class representatives for $C_2\times D_5\wr C_2$ |
| Character table for $C_2\times D_5\wr C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{10}) \), 4.2.24000.2, 10.6.9000000000000000.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.4.6.1 | $x^{4} - 6 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| 2.4.6.1 | $x^{4} - 6 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| 2.4.6.1 | $x^{4} - 6 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| 2.4.6.1 | $x^{4} - 6 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.10.0.1 | $x^{10} - x^{3} - x + 2$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| 5 | Data not computed | ||||||