Normalized defining polynomial
\( x^{20} - 6 x^{19} + 5 x^{18} + 16 x^{17} - 45 x^{16} + 306 x^{15} - 425 x^{14} - 2172 x^{13} + 4427 x^{12} + 6108 x^{11} - 17635 x^{10} - 7992 x^{9} + 41092 x^{8} + 3656 x^{7} - 60698 x^{6} - 1574 x^{5} + 54896 x^{4} + 6644 x^{3} - 26143 x^{2} - 5298 x + 4151 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-113062993649232013634145926250496=-\,2^{34}\cdot 7^{10}\cdot 13^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $40.06$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{23} a^{18} + \frac{1}{23} a^{17} + \frac{11}{23} a^{16} - \frac{10}{23} a^{14} + \frac{6}{23} a^{13} - \frac{5}{23} a^{12} - \frac{5}{23} a^{11} + \frac{4}{23} a^{10} + \frac{2}{23} a^{8} + \frac{3}{23} a^{7} + \frac{10}{23} a^{6} - \frac{3}{23} a^{5} - \frac{9}{23} a^{4} - \frac{1}{23} a^{3} - \frac{3}{23} a^{2} + \frac{11}{23}$, $\frac{1}{2313425165609588618507759250360387991} a^{19} - \frac{46733588774888802092487927744643454}{2313425165609588618507759250360387991} a^{18} + \frac{41761782070516281518266468789696005}{330489309372798374072537035765769713} a^{17} + \frac{22124566674142571396230884819689157}{2313425165609588618507759250360387991} a^{16} - \frac{840978304365541322416297556896908400}{2313425165609588618507759250360387991} a^{15} + \frac{889832064010696169984798624597964440}{2313425165609588618507759250360387991} a^{14} + \frac{203966445577039570785390607472991535}{2313425165609588618507759250360387991} a^{13} - \frac{438858794753011662862328011297434194}{2313425165609588618507759250360387991} a^{12} + \frac{120418025819438256853319744272908156}{330489309372798374072537035765769713} a^{11} + \frac{457261822918752762629248657469606996}{2313425165609588618507759250360387991} a^{10} - \frac{283292567969763904647366508216510872}{2313425165609588618507759250360387991} a^{9} - \frac{417348596025478640634485090224911609}{2313425165609588618507759250360387991} a^{8} + \frac{1063621212424083538746520190844011505}{2313425165609588618507759250360387991} a^{7} + \frac{1126898072682591859765445679679371805}{2313425165609588618507759250360387991} a^{6} - \frac{101368227070078421868087938456477062}{330489309372798374072537035765769713} a^{5} + \frac{680523896242863527908439628806320520}{2313425165609588618507759250360387991} a^{4} - \frac{952556993630608222739208576389527959}{2313425165609588618507759250360387991} a^{3} + \frac{1128431942416539593355326068950608529}{2313425165609588618507759250360387991} a^{2} - \frac{134232063756252327950431112460232392}{2313425165609588618507759250360387991} a + \frac{163657130854655805491865622032164011}{330489309372798374072537035765769713}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1171729471.05 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 40960 |
| The 124 conjugacy class representatives for t20n633 are not computed |
| Character table for t20n633 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 5.5.6889792.1, 10.10.379753870426112.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{3}$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | $20$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 7.8.6.3 | $x^{8} - 7 x^{4} + 147$ | $4$ | $2$ | $6$ | $C_8:C_2$ | $[\ ]_{4}^{4}$ | |
| 13 | Data not computed | ||||||