Normalized defining polynomial
\( x^{20} - 5 x^{19} + 16 x^{18} - 38 x^{17} + 36 x^{16} + 53 x^{15} - 225 x^{14} + 425 x^{13} - 559 x^{12} + 338 x^{11} + 384 x^{10} - 897 x^{9} + 449 x^{8} + 347 x^{7} - 442 x^{6} + 31 x^{5} + 132 x^{4} - 33 x^{3} - 17 x^{2} + 4 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-106562954951958175076204651=-\,251^{4}\cdot 1931^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.02$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $251, 1931$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{7} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{8} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{9} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{15} - \frac{1}{2}$, $\frac{1}{4} a^{16} - \frac{1}{4} a^{15} - \frac{1}{4} a^{14} - \frac{1}{4} a^{13} - \frac{1}{4} a^{11} - \frac{1}{4} a^{9} + \frac{1}{4} a^{8} - \frac{1}{4} a^{6} + \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4}$, $\frac{1}{4} a^{17} - \frac{1}{4} a^{13} - \frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{2} a^{9} + \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{8} a^{18} - \frac{1}{8} a^{16} + \frac{1}{8} a^{15} - \frac{1}{4} a^{14} - \frac{1}{4} a^{13} - \frac{1}{8} a^{12} - \frac{1}{4} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{8} a^{7} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} - \frac{3}{8} a^{3} + \frac{3}{8} a^{2} + \frac{1}{8} a - \frac{3}{8}$, $\frac{1}{11729806568} a^{19} + \frac{319339269}{5864903284} a^{18} + \frac{1239883585}{11729806568} a^{17} - \frac{169631103}{11729806568} a^{16} + \frac{652810953}{5864903284} a^{15} - \frac{190943940}{1466225821} a^{14} + \frac{1034887719}{11729806568} a^{13} - \frac{1224218699}{5864903284} a^{12} + \frac{195235795}{2932451642} a^{11} + \frac{1063087145}{5864903284} a^{10} - \frac{1414864961}{5864903284} a^{9} - \frac{4463429541}{11729806568} a^{8} - \frac{1452462905}{2932451642} a^{7} + \frac{1457617553}{2932451642} a^{6} - \frac{1038747919}{2932451642} a^{5} + \frac{2126267391}{11729806568} a^{4} + \frac{391808477}{11729806568} a^{3} - \frac{1306424377}{11729806568} a^{2} + \frac{5619105637}{11729806568} a + \frac{2865357671}{5864903284}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 372281.376086 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 15000 |
| The 190 conjugacy class representatives for t20n462 are not computed |
| Character table for t20n462 is not computed |
Intermediate fields
| 4.2.1931.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | $15{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }$ | $15{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }$ | $15{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }$ | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}$ | $20$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | $15{,}\,{\href{/LocalNumberField/23.5.0.1}{5} }$ | $20$ | $20$ | $15{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }$ | $15{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }$ | $15{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{5}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ | $20$ | $15{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 251 | Data not computed | ||||||
| 1931 | Data not computed | ||||||