Normalized defining polynomial
\( x^{20} - x^{19} - 5 x^{18} + 12 x^{17} + 38 x^{16} - 63 x^{15} - 360 x^{14} + 471 x^{13} + 577 x^{12} - 1603 x^{11} - 191 x^{10} + 1926 x^{9} + 566 x^{8} - 1116 x^{7} - 765 x^{6} + 582 x^{5} + 79 x^{4} - 88 x^{3} + 16 x^{2} + 6 x - 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1051522209829636336015666513671875=-\,5^{10}\cdot 11^{5}\cdot 401^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $44.78$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 11, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} - \frac{1}{3}$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{3}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{4}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{5}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{6}$, $\frac{1}{9} a^{15} - \frac{1}{9} a^{14} + \frac{1}{9} a^{13} - \frac{1}{9} a^{12} + \frac{1}{9} a^{11} - \frac{1}{9} a^{10} + \frac{1}{9} a^{9} - \frac{1}{9} a^{8} - \frac{4}{9} a^{7} + \frac{4}{9} a^{6} - \frac{4}{9} a^{5} + \frac{4}{9} a^{4} - \frac{4}{9} a^{3} + \frac{4}{9} a^{2} - \frac{4}{9} a + \frac{4}{9}$, $\frac{1}{9} a^{16} + \frac{1}{9} a^{8} - \frac{2}{9}$, $\frac{1}{9} a^{17} + \frac{1}{9} a^{9} - \frac{2}{9} a$, $\frac{1}{27} a^{18} + \frac{1}{27} a^{17} - \frac{1}{27} a^{16} + \frac{1}{9} a^{14} + \frac{1}{9} a^{12} + \frac{1}{9} a^{11} + \frac{1}{27} a^{10} + \frac{1}{27} a^{9} - \frac{1}{27} a^{8} - \frac{1}{3} a^{7} - \frac{4}{9} a^{6} - \frac{1}{3} a^{5} + \frac{2}{9} a^{4} - \frac{4}{9} a^{3} - \frac{11}{27} a^{2} - \frac{11}{27} a + \frac{11}{27}$, $\frac{1}{572267200295315044629} a^{19} - \frac{894387249127916980}{190755733431771681543} a^{18} + \frac{832886453257379983}{572267200295315044629} a^{17} - \frac{3414899406621246164}{572267200295315044629} a^{16} - \frac{188540051339220599}{7065027164139691909} a^{15} + \frac{2540492520737121142}{63585244477257227181} a^{14} - \frac{6724324718475272528}{63585244477257227181} a^{13} - \frac{27004163137010470643}{190755733431771681543} a^{12} + \frac{59075112157559350033}{572267200295315044629} a^{11} - \frac{3319179452745167311}{21195081492419075727} a^{10} - \frac{33693977656411349195}{572267200295315044629} a^{9} + \frac{12966774017517876343}{572267200295315044629} a^{8} + \frac{14671505254030603597}{63585244477257227181} a^{7} - \frac{16532103391218339833}{63585244477257227181} a^{6} - \frac{3895567192545950941}{63585244477257227181} a^{5} - \frac{13022750059706045893}{190755733431771681543} a^{4} + \frac{238967184838387726993}{572267200295315044629} a^{3} + \frac{82294846590474208903}{190755733431771681543} a^{2} + \frac{274870324360223702605}{572267200295315044629} a - \frac{155566402391904215819}{572267200295315044629}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3242123709.9 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$D_4\times D_5$ (as 20T21):
| A solvable group of order 80 |
| The 20 conjugacy class representatives for $D_4\times D_5$ |
| Character table for $D_4\times D_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.2.275.1, 5.5.160801.1, 10.10.80803005003125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{10}$ | R | $20$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ | $20$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $11$ | 11.10.0.1 | $x^{10} + x^{2} - x + 6$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ |
| 11.10.5.1 | $x^{10} - 242 x^{6} - 1331 x^{4} - 131769 x^{2} - 4026275$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 401 | Data not computed | ||||||