Normalized defining polynomial
\( x^{20} - 6 x^{19} + 3 x^{18} + 22 x^{17} - 15 x^{16} + 30 x^{15} + 81 x^{14} - 330 x^{13} - 300 x^{12} + 190 x^{11} - 315 x^{10} + 156 x^{9} + 637 x^{8} - 1302 x^{7} - 1782 x^{6} - 210 x^{5} + 498 x^{4} + 306 x^{3} + 48 x^{2} - 12 x - 3 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-10024029355890679518948322443264=-\,2^{20}\cdot 3^{19}\cdot 13^{7}\cdot 107^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $35.49$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 13, 107$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{11} + \frac{1}{3} a^{8}$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{12} + \frac{1}{3} a^{9}$, $\frac{1}{3} a^{16} - \frac{1}{3} a^{13} + \frac{1}{3} a^{10}$, $\frac{1}{3} a^{17} + \frac{1}{3} a^{8}$, $\frac{1}{9} a^{18} + \frac{1}{9} a^{17} + \frac{1}{3} a^{12} - \frac{1}{3} a^{10} + \frac{4}{9} a^{9} + \frac{1}{9} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{3} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{5142540516429754795590639} a^{19} + \frac{42922625028678435352147}{1714180172143251598530213} a^{18} - \frac{407927551532775624769267}{5142540516429754795590639} a^{17} + \frac{101258446751242531947919}{1714180172143251598530213} a^{16} + \frac{244883726385679480330256}{1714180172143251598530213} a^{15} + \frac{19388823673217255317582}{244882881734750228361459} a^{14} + \frac{248521809483340002568891}{571393390714417199510071} a^{13} + \frac{55353556317474030133523}{571393390714417199510071} a^{12} + \frac{307471707182708787641719}{1714180172143251598530213} a^{11} - \frac{574515326808131768570996}{5142540516429754795590639} a^{10} - \frac{23578984828691129494135}{1714180172143251598530213} a^{9} - \frac{185913257567650832025007}{734648645204250685084377} a^{8} + \frac{17272229699212865347919}{244882881734750228361459} a^{7} + \frac{13442057559788077982437}{81627627244916742787153} a^{6} - \frac{49303272793574580016567}{571393390714417199510071} a^{5} + \frac{832928133618347277338906}{1714180172143251598530213} a^{4} - \frac{475938589424748714923072}{1714180172143251598530213} a^{3} + \frac{442441286375412141540691}{1714180172143251598530213} a^{2} + \frac{274076744895660589226440}{1714180172143251598530213} a + \frac{49898830131102724727740}{1714180172143251598530213}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 392839564.457 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7372800 |
| The 324 conjugacy class representatives for t20n1023 are not computed |
| Character table for t20n1023 is not computed |
Intermediate fields
| \(\Q(\sqrt{3}) \), 10.6.38998285028352.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | R | $20$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}$ | $20$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.6.6.7 | $x^{6} + 3 x + 6$ | $6$ | $1$ | $6$ | $C_3^2:D_4$ | $[5/4, 5/4]_{4}^{2}$ |
| 3.6.6.7 | $x^{6} + 3 x + 6$ | $6$ | $1$ | $6$ | $C_3^2:D_4$ | $[5/4, 5/4]_{4}^{2}$ | |
| 3.8.7.2 | $x^{8} - 3$ | $8$ | $1$ | $7$ | $QD_{16}$ | $[\ ]_{8}^{2}$ | |
| $13$ | 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.3.0.1 | $x^{3} - 2 x + 6$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 13.3.0.1 | $x^{3} - 2 x + 6$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 13.6.4.2 | $x^{6} - 13 x^{3} + 338$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 107 | Data not computed | ||||||