Normalized defining polynomial
\( x^{20} - 10 x^{19} + 41 x^{18} - 84 x^{17} + 344 x^{16} - 2140 x^{15} + 5426 x^{14} - 736 x^{13} + 9401 x^{12} - 144650 x^{11} + 166397 x^{10} + 733364 x^{9} + 16678 x^{8} - 6490784 x^{7} - 1740120 x^{6} + 33068752 x^{5} + 28421816 x^{4} - 122025696 x^{3} - 162530192 x^{2} + 230512192 x + 420418912 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(99465402919592410684515977523034587136=2^{30}\cdot 11^{16}\cdot 17^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $79.41$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1496=2^{3}\cdot 11\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1496}(1,·)$, $\chi_{1496}(67,·)$, $\chi_{1496}(577,·)$, $\chi_{1496}(713,·)$, $\chi_{1496}(1291,·)$, $\chi_{1496}(273,·)$, $\chi_{1496}(339,·)$, $\chi_{1496}(203,·)$, $\chi_{1496}(137,·)$, $\chi_{1496}(1395,·)$, $\chi_{1496}(883,·)$, $\chi_{1496}(1123,·)$, $\chi_{1496}(169,·)$, $\chi_{1496}(1259,·)$, $\chi_{1496}(817,·)$, $\chi_{1496}(851,·)$, $\chi_{1496}(1257,·)$, $\chi_{1496}(441,·)$, $\chi_{1496}(1225,·)$, $\chi_{1496}(443,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{5}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{6}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{7}$, $\frac{1}{8} a^{12} - \frac{1}{8} a^{10} - \frac{1}{8} a^{8} + \frac{1}{8} a^{6}$, $\frac{1}{8} a^{13} - \frac{1}{8} a^{11} - \frac{1}{8} a^{9} + \frac{1}{8} a^{7}$, $\frac{1}{8} a^{14} - \frac{1}{8} a^{6}$, $\frac{1}{8} a^{15} - \frac{1}{8} a^{7}$, $\frac{1}{24656} a^{16} - \frac{1}{3082} a^{15} - \frac{99}{6164} a^{14} - \frac{85}{12328} a^{13} - \frac{18}{1541} a^{12} - \frac{1295}{12328} a^{11} - \frac{1453}{12328} a^{10} - \frac{1419}{12328} a^{9} - \frac{1741}{24656} a^{8} + \frac{2127}{12328} a^{7} + \frac{887}{12328} a^{6} + \frac{355}{1541} a^{5} + \frac{63}{6164} a^{4} - \frac{1095}{3082} a^{3} + \frac{1347}{3082} a^{2} - \frac{190}{1541} a - \frac{493}{1541}$, $\frac{1}{24656} a^{17} - \frac{5}{268} a^{15} - \frac{16}{1541} a^{14} + \frac{717}{12328} a^{13} + \frac{635}{12328} a^{12} - \frac{513}{6164} a^{11} - \frac{715}{12328} a^{10} - \frac{2871}{24656} a^{9} + \frac{1327}{12328} a^{8} + \frac{119}{1541} a^{7} + \frac{97}{536} a^{6} - \frac{905}{6164} a^{5} - \frac{145}{6164} a^{4} + \frac{146}{1541} a^{3} - \frac{17}{134} a^{2} - \frac{472}{1541} a + \frac{679}{1541}$, $\frac{1}{21442104974640575716573648} a^{18} - \frac{9}{21442104974640575716573648} a^{17} + \frac{63252480652628343203}{10721052487320287858286824} a^{16} - \frac{253009922610513372761}{5360526243660143929143412} a^{15} + \frac{8643352217944615735181}{1340131560915035982285853} a^{14} - \frac{237586188456765256561929}{5360526243660143929143412} a^{13} + \frac{18319065815908442724746}{1340131560915035982285853} a^{12} - \frac{85624405905409226240991}{10721052487320287858286824} a^{11} + \frac{1725419357568368741283649}{21442104974640575716573648} a^{10} + \frac{789717464730864621917477}{21442104974640575716573648} a^{9} - \frac{53289851165060549663855}{10721052487320287858286824} a^{8} + \frac{126204243052051498974497}{10721052487320287858286824} a^{7} - \frac{2250790808950406341755757}{10721052487320287858286824} a^{6} + \frac{322315686972131845111588}{1340131560915035982285853} a^{5} - \frac{293008252890569003254649}{1340131560915035982285853} a^{4} - \frac{1821688523958915694503}{62331700507676092199342} a^{3} + \frac{335877719485850949570982}{1340131560915035982285853} a^{2} - \frac{167787823823986806379568}{1340131560915035982285853} a - \frac{8591419656869351157390}{31165850253838046099671}$, $\frac{1}{482309982362840431454290992637264} a^{19} + \frac{11246787}{482309982362840431454290992637264} a^{18} + \frac{2712528154916155106183230575}{482309982362840431454290992637264} a^{17} + \frac{7708635912527963489425674155}{482309982362840431454290992637264} a^{16} - \frac{2366587919814846174852337682269}{241154991181420215727145496318632} a^{15} - \frac{380908932682877031716924572365}{30144373897677526965893187039829} a^{14} - \frac{6021570911714813734931485150871}{120577495590710107863572748159316} a^{13} + \frac{814012788405483987440254268758}{30144373897677526965893187039829} a^{12} - \frac{30063241793169301597292651083505}{482309982362840431454290992637264} a^{11} - \frac{19415675597733651392215174642663}{482309982362840431454290992637264} a^{10} + \frac{44504130135041322326689534483661}{482309982362840431454290992637264} a^{9} + \frac{467300163373975066068935620571}{11216511217740475150099790526448} a^{8} + \frac{44273552728058802883871445973057}{241154991181420215727145496318632} a^{7} - \frac{20229917451423713851357286162501}{120577495590710107863572748159316} a^{6} - \frac{193136065471890222205469737005}{60288747795355053931786374079658} a^{5} + \frac{29608398820932392210872305898149}{120577495590710107863572748159316} a^{4} + \frac{14099766596115243004609894744939}{30144373897677526965893187039829} a^{3} - \frac{8733267566155181202345081667792}{30144373897677526965893187039829} a^{2} - \frac{2842660892151245389365358826238}{30144373897677526965893187039829} a - \frac{2218524031629263576147245518}{7876763495604266257092549527}$
Class group and class number
$C_{19910}$, which has order $19910$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3338983.62101 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{-34}) \), \(\Q(\sqrt{-2}, \sqrt{17})\), \(\Q(\zeta_{11})^+\), 10.0.7024111812608.1, 10.10.304358957700017.1, 10.0.9973234325914157056.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.15.9 | $x^{10} - 6 x^{8} - 24 x^{6} + 80 x^{4} + 336 x^{2} + 33056$ | $2$ | $5$ | $15$ | $C_{10}$ | $[3]^{5}$ |
| 2.10.15.9 | $x^{10} - 6 x^{8} - 24 x^{6} + 80 x^{4} + 336 x^{2} + 33056$ | $2$ | $5$ | $15$ | $C_{10}$ | $[3]^{5}$ | |
| $11$ | 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| $17$ | 17.10.5.1 | $x^{10} - 578 x^{6} + 83521 x^{2} - 51114852$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 17.10.5.1 | $x^{10} - 578 x^{6} + 83521 x^{2} - 51114852$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |